Heuristic Search Heuristics (Intro to Games)

Andrea Danyluk February 13, 2017

Announcements

Programming Assignment 1: Search

 In progress

- A bit more on A*
- Heuristics
- (Games)

A* Search

- A* search
 - Orders nodes by the sum: f(n) = g(n) + h(n)
 - g(n) is backward cost (to start node)
 - h(n) is forward cost (to closest goal)
 - Optimality requirements
 - Tree search (avoid cycles, but no other notion of "explored" data structure): Heuristic must be admissible
 - Never overestimates the cost to the goal

A* Search

A* search

- Orders nodes by the sum: f(n) = g(n) + h(n)
- g(n) is backward cost (to start node)
- h(n) is forward cost (to closest goal)
- Optimality requirements
 - Graph Search (keeps track of "explored"): Heuristic must be consistent
 - If n¹ is a successor of n generated by action a
 - » h(n) ≤ c(n, a, n¹) + h(n¹)
 - » if an action has cost c, then taking that action can only cause a drop in heuristic of at most c

<u>Lemma</u>. If h(n) is consistent, then the values of f(n) along any path are nondecreasing.

Proof:

Let n^1 be a successor of n generated by action a. Then $g(n^1) = g(n) + c(n, a, n^1)$ $f(n^1) = g(n^1) + h(n^1)$ $= g(n) + c(n, a, n^1) + h(n^1)$ $\ge g(n) + h(n)$, by definition of consistency <u>Theorem</u>. When A* selects a node for expansion (and marks it "explored"), the optimal path to that node has been found. Proof: Assume the contrary. Say that a node n^1 has been selected for expansion, but the optimal path to that node has not been found.

If n^1 has been selected for expansion, it must be the case that $f(n^1) \le f(p)$ for every node p on the optimal path to n that is currently on the frontier.

If the path found is suboptimal, it must be the case that $g(n^1) > g^*(n^1)$, where g^* is the optimal cost of reaching n^1 through p.

Now, we know that our heuristic is consistent, so $f^*(n^1) \ge f(p)$.

But since $h(n^1)$ is the same no matter how you get to n^1 , this means $g(n^1) + h(n^1) > g^*(n^1) + h(n^1) = f^*(n^1) \ge f(p)$, but then $f(n^1) > f(p)$, a CONTRADICTION.

Heuristics

- The closer h is to the true cost to the goal, the better A* will perform.
- Better heuristic functions can take more time to compute.
- Trading off heuristic computation time for search time.
- How to design admissible/consistent heuristics?
- · How to make them efficient to compute?

Generating Heuristics

- Calculate the cost to the goal for a relaxed version of the problem
 - Eight-puzzle (or any sliding tile puzzle)
 - Count moves of tiles without taking into account any tiles in the way
 - Count the number of tiles out of place, as if you can lift each tile and place it, without following the rules for movement.
 - Path planning problems
 - Use distance "as the crow flies"

Fifteen Puzzle

- Random 15-puzzle instances first solved optimally by IDA* using Manhattan distance (Korf, 1985)
- Optimal solution lengths average 53 moves
- 400 million nodes generated on average
- Twenty-four puzzle: a significantly harder problem. How to solve it?

[This slide and much of the following adapted from Rich Korf]

Limitations of Manhattan Distance

- In fact, tiles interfere with each other
- Account for these interactions as efficiently as possible

Pattern Database Heuristics

- Culberson and Schaeffer, 1996
- A pattern database is a complete set of such positions, with associated number of moves.
- e.g. a 7-tile pattern database for the Fifteen Puzzle contains 519 million entries.

Additive Pattern Databases

- If no tile belongs to more than one pattern, then we can add their heuristic values.
- Manhattan distance is a special case of this, where each pattern contains a single tile.

Games

- Planning/problem solving in the presence of an adversary → adversarial search
- Why games?
 - Easy to measure success or failure
 - States and rules are generally easy to specify
 - Interesting and complex
 - Space and time complexity
 - Uncertainty of adversaries' action, rolls of dice, etc.

Backgammon

- TDGammon uses depth-2 search + very good evaluation function + reinforcement learning (Gerry Tesauro, IBM)
- World-champion level play
- 1st AI world champion in any game!

[Adapted from CS 188 Berkeley] Checkers

- Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.
- Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.
- Checkers is solved!

Go

- AlphaGo became the first program to beat a human professional Go player without handicaps on a full 19x19 board.
- In go, b > 300
- Uses Monte Carlo tree search to select moves.
- Uses knowledge learned from a combination of reinforcement and deep learning.

[Adapted from CS 188 Berkeley]

- Libratus [Sandholm and Brown, CMU] won \$1.7m (in chips) from 4 professional poker players over 20 days in January 2017
- No-limit Texas Hold'em
- Hard because it's a game of imperfect information. Can't see the opponent's hand.
- The "final frontier" in games...