
2/10/17	

1	

Problem	Solving	and	Search	

Andrea	Danyluk	
February	10,	2017	

Announcements	

•  Programming	Assignment	1:	Search	
– Posted	online	
	

Today’s	Lecture	

•  Informed	(HeurisHc)	search	
– Greedy	best-first	
– A*	

•  Will	talk	a	bit	more	about	heurisHcs	on	
Monday		

Uniform	Cost	Search	

a	
b	

h	

g	

c	

f	

e	

d	

i	

2	

3	

1	
1	

1	
1	

2	

3	

3.5	

4	

5	

3	
3.75	

3	

Fringe	is	a	Priority	Queue	
	
Priority	=	cost	so	far	

Similar	to	another	
algorithm	you	know?	

EvaluaHng	Uniform	Cost	Search	

•  Complete?	
– Yes	(if	b	is	finite	and	step	cost	≥	ε for	posiHve	ε)	

•  OpHmal?	
– Yes	

•  Time	Complexity?	
– O(b	1+C*/ε)	ç	Can’t	check	for	goal	unHl	coming	out											

	 	 	 	 	of	PQ!	
•  Space	Complexity?	
– O(b1+C*/ε)	

Generalized	Search	
Function SEARCH(problem, frontier)
 returns a solution, or failure
 expanded ← an empty set
 frontier ← Insert(Make-Node(Initial-State[problem]),
 frontier)
 loop do
 if frontier is empty then return failure
 node ← Remove(frontier)
 if Goal-Test(problem, State[node]) then return node
 if State[node] is not in expanded then
 add State[node] to expanded
 frontier ← InsertAll(Expand(node, problem),
 frontier)
 end

But	be	careful	about	slight	(and	yet	significant)	differences!	

2/10/17	

2	

So	we’re	done,	right?	

Our	search	spaces	are	big.	

Informed	(HeurisHc)	Search	Strategies	

•  Use	problem-specific	knowledge	to	find	
soluHons	more	efficiently	

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Best-first	Search	

•  Choose	a	node	from	the	fronHer	based	on	its	
“desirability”	
– FronHer	is	a	priority	queue	

•  Requires	a	search	heurisHc	
– Any	esHmate	of	how	close	a	state	is	to	a	goal	
– Examples:	
•  Euclidean	distance	
•  Manhahan	distance	
•  For	the	“rush	hour”	parking	problem?	

Greedy	Best-first	Search	

h(n)	=	esHmate	of	cost	from	n	to	the	closest	goal	
	
Expand	the	node	with	lowest	h	value	
	-	i.e.,	the	node	that	appears	to	be	closest	to	
the	goal	

	

Greedy	Search	with	hSLD	

a	
b	

h	

g	

c	

f	

e	

d	

i	

2	

3	

1	
1	

1	
1	

2	

3	

3.5	

4	

5	

3	
3.75	

3	

a	 6	

b	 2.5	

c	 6	

d	 3	

e	 1.5	

f	 3	

g	 0	

h	 3.5	

i	 6.5	

black	 4.5	

red	 3.5	

yellow	 2.5	

This	Hme	g	
is	the	goal.	

Problems	with	Greedy	Search?	

Can	be	quite	good	with	a	high-quality	heurisHc,	
but	

•  Not	opHmal	

•  Time	and	space	complexity:	O(bm)	

2/10/17	

3	

Cost-Based	Searches	

•  Uniform	Cost	Search	
– Expands	leaf	node	on	path	with	lowest	cost	so	far	
– Good:	Complete	and	OpHmal	
– Bad:	Explores	“widely”;	doesn’t	take	into	acct	any	
info	about	the	goal	

•  Greedy	Search	
– Expands	node	that	appears	closest	to	a	goal	
– Can	take	you	(quickly)	to	the	wrong	goal	

[Adapted	from	CS	188	UC	Berkeley]	

A*	Search	

•  Uniform	cost	search	
– Orders	nodes	by	backward	cost	g(n)	

•  Greedy	search	
– Orders	nodes	by	forward	cost	h(n)	

•  A*	search	
– Orders	nodes	by	the	sum:	f(n)	=	g(n)	+	h(n)	

[Adapted	from	CS	188	UC	Berkeley]	

When	should	A*	terminate?	

•  Should	we	perform	the	goal	test	when	
–  InserHng	a	node	into	the	priority	queue?	
– Removing	a	node	from	the	priority	queue?	
	
When	removing	from	the	priority	queue	

A*	Search	with	hSLD	

a	
b	

h	

g	

c	

f	

e	

d	

i	

2	

3	

1	
1	

1	
1	

2	

3	

3.5	

4	

5	

3	
3.75	

3	

a	 6	

b	 2.5	

c	 6	

d	 3	

e	 1.5	

f	 3	

g	 0	

h	 3.5	

i	 6.5	

black	 4.5	

red	 3.5	

yellow	 2.5	

Tree	Search	

g	is	the	goal	

Is	A*	Search	OpHmal?	

a	
b	

h	

g	

c	

f	

e	

d	

i	

2	

3	

1	
1	

1	
1	

2	

3	

3.5	

4	

5	

3	
3.75	

3	

Tree	Search	

a	 6	

b	 2.5	

c	 6	

d	 3	

e	 1.5	

f	 3	

g	 0	

h	 3.5	

i	 6.5	

black	 6	

red	 5	

yellow	 3.5	

A*	CondiHons	for	OpHmality	

•  Tree	Search	
– HeurisHc	must	be	admissible	
•  Never	overesHmates	the	cost	to	the	goal	

2/10/17	

4	

A*	Graph	Search	Gone	Wrong	

a	

b	

c	

d	

g	

1	

1	

1	

2	
3	

h=0	

h=1	

h=2	

h=4	

h=1	

HeurisHc	admissible?	

What	happens?	

[Adapted	from	CS	188	UC	Berkeley]	

A*	CondiHons	for	OpHmality	

•  Tree	Search	
– HeurisHc	must	be	admissible	
•  Never	overesHmates	the	cost	to	the	goal	

•  Graph	Search	
– HeurisHc	must	be	consistent	
•  If	n1	is	a	successor	of	n	generated	by	acHon	a	

–  h(n)	≤	c(n,	a,	n1)	+	h(n1)	

–  if	an	acHon	has	cost	c,	then	taking	that	ac8on	can	only	cause	a	
drop	in	heuris8c	of	at	most	c	

