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Problem	Solving	and	Search	

Andrea	Danyluk	
February	10,	2017	

Announcements	

•  Programming	Assignment	1:	Search	
– Posted	online	
	

Today’s	Lecture	

•  Informed	(HeurisHc)	search	
– Greedy	best-first	
– A*	

•  Will	talk	a	bit	more	about	heurisHcs	on	
Monday		

Uniform	Cost	Search	
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Fringe	is	a	Priority	Queue	
	
Priority	=	cost	so	far	

Similar	to	another	
algorithm	you	know?	

EvaluaHng	Uniform	Cost	Search	

•  Complete?	
– Yes	(if	b	is	finite	and	step	cost	≥	ε for	posiHve	ε	)	

•  OpHmal?	
– Yes	

•  Time	Complexity?	
– O(b	1+C*/ε)	ç	Can’t	check	for	goal	unHl	coming	out											

	 	 	 	 	of	PQ!	
•  Space	Complexity?	
– O(b1+C*/ε)	

Generalized	Search	
Function SEARCH(problem, frontier) 
        returns a solution, or failure
   expanded ← an empty set
   frontier ← Insert(Make-Node(Initial-State[problem]),
  frontier) 
   loop do
      if frontier is empty then return failure 
      node ← Remove(frontier) 
      if Goal-Test(problem, State[node]) then return node 
      if State[node] is not in expanded then
         add State[node] to expanded 
         frontier ← InsertAll(Expand(node, problem),
                               frontier)
   end

But	be	careful	about	slight	(and	yet	significant)	differences!	
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So	we’re	done,	right?	

Our	search	spaces	are	big.	

Informed	(HeurisHc)	Search	Strategies	

•  Use	problem-specific	knowledge	to	find	
soluHons	more	efficiently	
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Best-first	Search	

•  Choose	a	node	from	the	fronHer	based	on	its	
“desirability”	
– FronHer	is	a	priority	queue	

•  Requires	a	search	heurisHc	
– Any	esHmate	of	how	close	a	state	is	to	a	goal	
– Examples:	
•  Euclidean	distance	
•  Manhahan	distance	
•  For	the	“rush	hour”	parking	problem?	

Greedy	Best-first	Search	

h(n)	=	esHmate	of	cost	from	n	to	the	closest	goal	
	
Expand	the	node	with	lowest	h	value	
	-	i.e.,	the	node	that	appears	to	be	closest	to	
the	goal	

	

Greedy	Search	with	hSLD	
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This	Hme	g	
is	the	goal.	

Problems	with	Greedy	Search?	

Can	be	quite	good	with	a	high-quality	heurisHc,	
but	

•  Not	opHmal	

•  Time	and	space	complexity:	O(bm)	
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Cost-Based	Searches	

•  Uniform	Cost	Search	
– Expands	leaf	node	on	path	with	lowest	cost	so	far	
– Good:	Complete	and	OpHmal	
– Bad:	Explores	“widely”;	doesn’t	take	into	acct	any	
info	about	the	goal	

•  Greedy	Search	
– Expands	node	that	appears	closest	to	a	goal	
– Can	take	you	(quickly)	to	the	wrong	goal	

[Adapted	from	CS	188	UC	Berkeley]	

A*	Search	

•  Uniform	cost	search	
– Orders	nodes	by	backward	cost	g(n)	

•  Greedy	search	
– Orders	nodes	by	forward	cost	h(n)	

•  A*	search	
– Orders	nodes	by	the	sum:	f(n)	=	g(n)	+	h(n)	

[Adapted	from	CS	188	UC	Berkeley]	

When	should	A*	terminate?	

•  Should	we	perform	the	goal	test	when	
–  InserHng	a	node	into	the	priority	queue?	
– Removing	a	node	from	the	priority	queue?	
	
When	removing	from	the	priority	queue	

A*	Search	with	hSLD	
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Tree	Search	

g	is	the	goal	

Is	A*	Search	OpHmal?	
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Tree	Search	

a	 6	

b	 2.5	

c	 6	

d	 3	

e	 1.5	

f	 3	

g	 0	

h	 3.5	

i	 6.5	

black	 6	

red	 5	

yellow	 3.5	

A*	CondiHons	for	OpHmality	

•  Tree	Search	
– HeurisHc	must	be	admissible	
•  Never	overesHmates	the	cost	to	the	goal	
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A*	Graph	Search	Gone	Wrong	
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HeurisHc	admissible?	

What	happens?	

[Adapted	from	CS	188	UC	Berkeley]	

A*	CondiHons	for	OpHmality	

•  Tree	Search	
– HeurisHc	must	be	admissible	
•  Never	overesHmates	the	cost	to	the	goal	

•  Graph	Search	
– HeurisHc	must	be	consistent	
•  If	n1	is	a	successor	of	n	generated	by	acHon	a	

–  h(n)	≤	c(n,	a,	n1)	+	h(n1)	

–  if	an	acHon	has	cost	c,	then	taking	that	ac8on	can	only	cause	a	
drop	in	heuris8c	of	at	most	c	


