Problem Solving and Search

Andrea Danyluk
February 10, 2017

2/10/17

Announcements

* Programming Assignment 1: Search
— Posted online

Today’s Lecture

¢ Informed (Heuristic) search
— Greedy best-first
— A*

* Will talk a bit more about heuristics on
Monday

Uniform Cost Search

Similar to another
algorithm you know?

Fringe is a Priority Queue

Priority = cost so far

Evaluating Uniform Cost Search

* Complete?
— Yes (if b is finite and step cost > ¢ for positive ¢ )
* Optimal?
—Yes
* Time Complexity?
— O(b 1*¢*7¢) €= Can’t check for goal until coming out
of PQ!
* Space Complexity?
_ O(b1+C*/E)

Generalized Search

Function SEARCH(problem, frontier)
returns a solution, or failure
expanded < an empty set
frontier < Insert(Make-Node(Initial-State[problem]),
frontier)
loop do
if frontier is empty then return failure
node < Remove(frontier)
if Goal-Test(problem, State[node]) then return node
if State[node] is not in expanded then
add State[node] to expanded
frontier < InsertAll(Expand(node, problem),
frontier)

But be careful about slight (and yet significant) differences!




So we’re done, right?

Our search spaces are big.

2/10/17

Informed (Heuristic) Search Strategies

* Use problem-specific knowledge to find
solutions more efficiently

7 gh gt gh gh i o

Best-first Search

* Choose a node from the frontier based on its
“desirability”
— Frontier is a priority queue

* Requires a search heuristic
— Any estimate of how close a state is to a goal

— Examples:
* Euclidean distance
* Manhattan distance
* For the “rush hour” parking problem?

Greedy Best-first Search

h(n) = estimate of cost from n to the closest goal

Expand the node with lowest h value

- i.e., the node that appears to be closest to
the goal

Greedy Search with hg

e Q@ s
c 6
d 3
e 1.5
f 3
g 0
h 3.5
i 6.5
black 4.5
red 35
yellow | 2.5

Problems with Greedy Search?

Can be quite good with a high-quality heuristic,
but

* Not optimal

* Time and space complexity: O(b™)




Cost-Based Searches

Uniform Cost Search

A* Search

* Uniform cost search

— Expands leaf node on path with lowest cost so far — Orders nodes by backward cost g(n)

— Good: Complete and Optimal * Greedy search

— Bad: Explores “widely”; doesn’t take into acct any
info about the goal

* Greedy Search

— Expands node that appears closest to a goal

— Orders nodes by forward cost h(n)
* A*search
— Orders nodes by the sum: f(n) = g(n) + h(n)

— Can take you (quickly) to the wrong goal

[Adapted from CS 188 UC Berkeley]
[Adapted from CS 188 UC Berkeley]

When should A* terminate? A* Search with hg
* Should we perform the goal test when gisthegoal s L) Z 25
— Inserting a node into the priority queue? c p
— Removing a node from the priority queue? d 3
e 15
When removing from the priority queue f 3
g 0
. £ h 35
.y g
L ¢ J i 6.5
%'/ black |45
Tree Search "//« ) red 3.5
\v/ yellow |2.5

Is A* Search Optimal? A* Conditions for Optimality

a 6
b s * Tree Search
c 6 — Heuristic must be admissible
d 3 * Never overestimates the cost to the goal
e 15
f 3
g 0
h 35
. i 6.5
/'/ black 6
Tree Search & red g
\v) yellow | 3.5




A* Graph Search Gone Wrong

p
p= h=4 N het
What happens?
h=2 \1
3
¢
h=1 @

Heuristic admissible?

[Adapted from CS 188 UC Berkeley]

2/10/17

A* Conditions for Optimality

* Tree Search
— Heuristic must be admissible
* Never overestimates the cost to the goal
* Graph Search

— Heuristic must be consistent
« If nlis a successor of n generated by action a
—h(n) <c(n, a, n?) + h(n?)

— if an action has cost ¢, then taking that action can only cause a

drop in heuristic of at most ¢




