Problem Solving and Search

Andrea Danyluk February 8, 2017

Announcements

- Progamming Assignment 0: Python Tutorial – Due tomorrow at 11pm
- Assignment 1: Search - Will be posted on Friday
- Office Hours
 - Mon 1-3pm, Tues 1-2pm, Wed 11am-noon

Today's Lecture

- · Finish Uninformed search - Breadth-first
 - Depth-first and variants
- Uniform-cost search New
- · Informed (Heuristic) search - Greedy best-first

Evaluating Search Strategies

- Completeness
 - Is the strategy guaranteed to find a solution when there is one?
- Optimality
 - Does the strategy find the highest-quality solution when there are several solutions?
- **Time Complexity** How long does it take (in the worst case) to find a solution?
- Space Complexity
 - How much memory is required (in the worst case)?

Evaluating BFS

- Complete?
 - Yes (if the number of possible actions is finite)
- Optimal?
 - Not in general. When is it optimal? • When costs of all actions are the same
- Time Complexity?
- How do we measure it?
- Space Complexity?

Time and Space Complexity

Let

- b = branching factor (i.e., max number of successors)
- *m* = maximum depth of the search tree
- *d* = depth of shallowest solution
- For BFS
- Time: $O(b^d)$ If we check for goal as we generate a node! Not if we check as we get ready to expand! Space: O(b^d)

Evaluating DFS

- Complete?
- Not in general
 - Yes if state space is finite and we modify tree search to account for loops
- Optimal?
- NoTime Complexity?
- $O(b^m)$
- Space Complexity?
 O(mb)

Depth-Limited DFS?

- Let \mathcal{L} be the depth limit
- Complete?
- No
- Optimal?
 - No
- Time Complexity?
 O(b²)
- Space Complexity?
 O(b *l*)

- Yes (if b is finite)
- Optimal?
 Yes (if costs of all actions are the same)
- Time Complexity?
 O(b^d)
- Space Complexity?
 O(bd)

