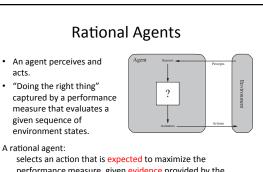
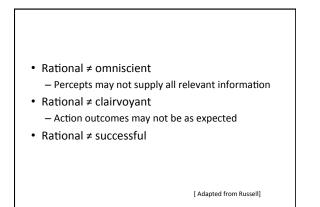
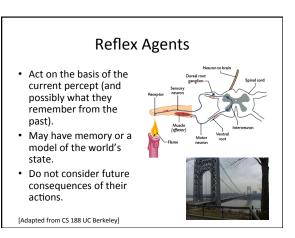
Problem Solving and Search


Andrea Danyluk February 6, 2017

Announcements


- Progamming Assignment 0: Python Tutorial
 Optional / Ungraded
 - Optional / Ongrade
 Posted last week
 - Due Thursday at 11pm
 - No CS Unix account? Let me know!


Today's Lecture

- Agents
- Goal-directed problem-solving and search
- Uninformed search
 - Breadth-first
 - Depth-first
- Formulating a problem as a search problem

performance measure, given evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Goal-based Agents

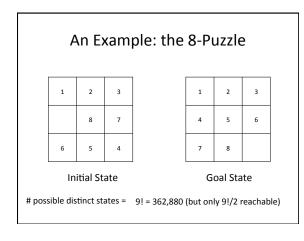
- Plan ahead
- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
- Have a model of how the world evolves in response to actions

[Adapted from CS 188 UC Berkeley]

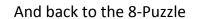
Building a goal-based agent

- Determine the percepts available to the agent
- Select/devise a representation for world states
- Determine the task knowledge the agent will need
- Clearly articulate goal(s)

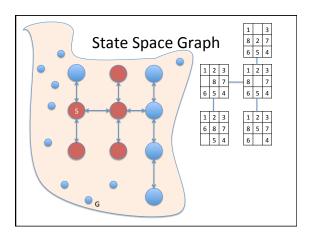
 Including what to optimize
- Select/devise a problem-solving technique so that the agent can decide what to do


Search as a Fundamental Problem-Solving Technique

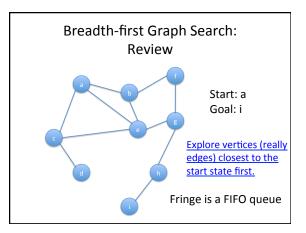
• Originated with Newell and Simon's work on problem solving in the late 60s.

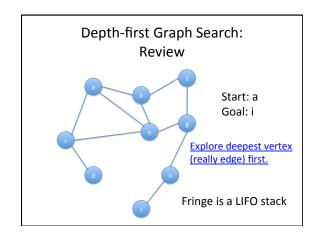

Search Problems

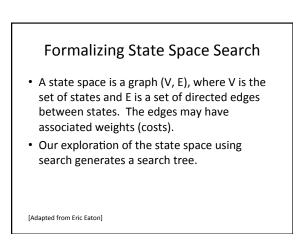
- A search problem consists of
- A state space
 - A set of states
 - As set of actions
 - A transition model that specifies results of applying actions to states
 Successor function: Result(s, a)
- An initial state
- A goal test


Real world examples

- Navigation
- Vehicle parking
- Parsing (natural and artificial languages)
 The old dog slept on the porch
 - The old dog the footsteps of the young

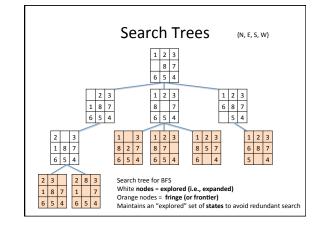

- States:
 Puzzle configurations
- Actions:
- Move blank N, S, E, or W
- Start state:
 As given
- Goal test:
 Is current state = specified goal state?


1	2	3	
	8	7	
6	5	4	
1	2	3	
4	5	6	
7	8		



Finding a solution in a problem graph

- Solving the puzzle = finding a path through the graph from initial state to goal state
- Simple graph search algorithms:
 - Breadth-first search
 - Depth-first search



State Space Search in the AI World

- Rarely given a graph
- We don't build the graph before doing the search

- Our search problems are BIG

Search Tree

- A "what if" tree of plans and outcomes
- Start state at the root node
- Children correspond to successors
- Nodes contain states; correspond to plans to those states
- Aim to build as little as possible
- Because we build the tree "on the fly" the representations of states and actions matter! [Adapted from CS 188 UC Berkeley]

Nodes in Search Trees

- A node in a search tree typically contains:
 - A state description
 - A reference to the parent node
 - The name of the operator that generated it from its parent
 - The cost of the path from the initial state to itself
 - Might also include its depth in the tree
- The node that is the root of the search tree typically represents the initial state

Operators and Goal Tests

- Child nodes are generated by applying legal operators to a node
 - The process of expanding a node means to generate all of its successor nodes and to add them to the frontier.
- A goal test is a function applied to a state to determine whether its associated node is a goal node

Solutions in Search Trees

- A solution is either
 - A sequence of operators that is associated with a path from start state to goal or
 - A state that satisfies the goal test
- The cost of a solution is the sum of the edge costs on the solution path
 - If all edges have the same (unit) cost, then the solution cost is just the length of the solution (i.e., the length of the path)

Framing a Problem as Search

- 8 Queens
 - States?
 - Goal test?
 - Operators?