
2/8/17	

1	

Problem	Solving	and	Search	

Andrea	Danyluk	
February	6,	2017	

Announcements	

•  Progamming	Assignment	0:	Python	Tutorial	
– OpFonal	/	Ungraded	
– Posted	last	week	
– Due	Thursday	at	11pm	

– No	CS	Unix	account?	Let	me	know!	

Today’s	Lecture	

•  Agents	
•  Goal-directed	problem-solving	and	search	
•  Uninformed	search	
– Breadth-first	
– Depth-first		

•  FormulaFng	a	problem	as	a	search	problem	

RaFonal	Agents	
•  An	agent	perceives	and	

acts.	
•  “Doing	the	right	thing”	

captured	by	a	performance	
measure	that	evaluates	a	
given	sequence	of	
environment	states.	

Agent Sensors

Actuators

Environment

Percepts

Actions

?

A	raFonal	agent:		
	selects	an	acFon	that	is	expected	to	maximize	the	

	 	performance	measure,	given	evidence	provided	by	the	
	 	percept	sequence	and	whatever	built-in	knowledge	the	
	 	agent	has.	
	

•  RaFonal	≠	omniscient	
– Percepts	may	not	supply	all	relevant	informaFon	

•  RaFonal	≠	clairvoyant	
– AcFon	outcomes	may	not	be	as	expected	

•  RaFonal	≠	successful	

[Adapted	from	Russell]	
	

Reflex	Agents	

•  Act	on	the	basis	of	the	
current	percept	(and	
possibly	what	they	
remember	from	the	
past).	

•  May	have	memory	or	a	
model	of	the	world’s	
state.	

•  Do	not	consider	future	
consequences	of	their	
acFons.	

[Adapted	from	CS	188	UC	Berkeley]	

2/8/17	

2	

Goal-based	Agents	

•  Plan	ahead	
•  Ask	“what	if”	
•  Decisions	based	on	(hypothesized)	consequences	of	
acFons	

•  Have	a	model	of	how	the	world	evolves	in	response	
to	acFons	

[Adapted	from	CS	188	UC	Berkeley]	

Building	a	goal-based	agent	

•  Determine	the	percepts	available	to	the	agent	
•  Select/devise	a	representaFon	for	world	
states	

•  Determine	the	task	knowledge	the	agent	will	
need	

•  Clearly	arFculate	goal(s)	
–  Including	what	to	opFmize	

•  Select/devise	a	problem-solving	technique	so	
that	the	agent	can	decide	what	to	do	

Search	as	a	Fundamental	Problem-
Solving	Technique	

•  Originated	with	Newell	and	Simon’s	work	on	
problem	solving	in	the	late	60s.	

Search	Problems	

A	search	problem	consists	of		
•  A	state	space	
– A	set	of	states	
– As	set	of	acFons	
– A	transiFon	model	that	specifies	results	of	
applying	acFons	to	states	
•  Successor	funcFon:	Result(s,	a)	

•  An	iniFal	state	
•  A	goal	test	

An	Example:	the	8-Puzzle	

1	 2	 3	

8	 7	

6	 5	 4	

1	 2	 3	

4	 5	 6	

7	 8	

IniFal	State	 Goal	State	

#	possible	disFnct	states	=		 9!	=	362,880	(but	only	9!/2	reachable)	

Real	world	examples	

•  NavigaFon	
•  Vehicle	parking	
•  Parsing	(natural	and	arFficial	languages)	
– The	old	dog	slept	on	the	porch	
– The	old	dog	the	footsteps	of	the	young	

2/8/17	

3	

And	back	to	the	8-Puzzle	

•  States:	
–  Puzzle	configuraFons	

•  AcFons:	
– Move	blank	N,	S,	E,	or	W	

•  Start	state:	
–  As	given	

•  Goal	test:	
–  Is	current	state	=	
specified	goal	state?	

1	 2	 3	

8	 7	

6	 5	 4	

1	 2	 3	

4	 5	 6	

7	 8	

State	Space	Graph	
1	 2	 3	

8	 7	

6	 5	 4	

1	 2	 3	

8	 7	

6	 5	 4	

1	 3	

8	 2	 7	

6	 5	 4	

1	 2	 3	

8	 5	 7	

6	 4	

1	 2	 3	

6	 8	 7	

5	 4	

S	

G	

Finding	a	soluFon	in	a	problem	graph	

•  Solving	the	puzzle	=	finding	a	path	through	the	
graph	from	iniFal	state	to	goal	state	

•  Simple	graph	search	algorithms:	
– Breadth-first	search	
– Depth-first	search	

Breadth-first	Graph	Search:	
Review	

a	
b	

h	

g	

c	

f	

e	

d	

i	
Fringe	is	a	FIFO	queue	

Start:	a	
Goal:	i	

Explore	verFces	(really	
edges)	closest	to	the	
start	state	first.	

Depth-first	Graph	Search:	
Review	

a	
b	

h	

g	

c	

f	

e	

d	

i	
Fringe	is	a	LIFO	stack	

Start:	a	
Goal:	i	

Explore	deepest	vertex	
(really	edge)	first.	

Formalizing	State	Space	Search	

•  A	state	space	is	a	graph	(V,	E),	where	V	is	the	
set	of	states	and	E	is	a	set	of	directed	edges	
between	states.		The	edges	may	have	
associated	weights	(costs).	

•  Our	exploraFon	of	the	state	space	using	
search	generates	a	search	tree.	

[Adapted	from	Eric	Eaton]	

2/8/17	

4	

State	Space	Search	in	the	AI	World	

•  Rarely	given	a	graph		
•  We	don’t	build	the	graph	before	doing	the	
search	
– Our	search	problems	are	BIG	

Search	Trees	
1	 2	 3	

8	 7	

6	 5	 4	

2	 3	

1	 8	 7	

6	 5	 4	

1	 2	 3	

8	 7	

6	 5	 4	

1	 2	 3	

6	 8	 7	

5	 4	

{N,	E,	S,	W}	

2	 3	

1	 8	 7	

6	 5	 4	

1	 3	

8	 2	 7	

6	 5	 4	

1	 2	 3	

8	 5	 7	

6	 4	

1	 2	 3	

8	 7	

6	 5	 4	

1	 2	 3	

6	 8	 7	

5	 4	

2	 3	

1	 8	 7	

6	 5	 4	

2	 8	 3	

1	 7	

6	 5	 4	

Search	tree	for	BFS	
White	nodes	=	explored	(i.e.,	expanded)	
Orange	nodes	=		fringe	(or	fron3er)	
Maintains	an	“explored”	set	of	states	to	avoid	redundant	search	

Search	Tree	

•  A	“what	if”	tree	of	plans	and	outcomes	
•  Start	state	at	the	root	node	
•  Children	correspond	to	successors	
•  Nodes	contain	states;	correspond	to	plans	to	
those	states	

•  Aim	to	build	as	liple	as	possible	
•  Because	we	build	the	tree	“on	the	fly”	the	
representaFons	of	states	and	acFons	maper!	

[Adapted	from	CS	188	UC	Berkeley]	

Nodes	in	Search	Trees	

•  A	node	in	a	search	tree	typically	contains:	
– A	state	descripFon	
– A	reference	to	the	parent	node	
– The	name	of	the	operator	that	generated	it	from	
its	parent	

– The	cost	of	the	path	from	the	iniFal	state	to	itself	
– Might	also	include	its	depth	in	the	tree	

•  The	node	that	is	the	root	of	the	search	tree	
typically	represents	the	iniFal	state	

Operators	and	Goal	Tests	

•  Child	nodes	are	generated	by	applying	legal	
operators	to	a	node	
– The	process	of	expanding	a	node	means	to	
generate	all	of	its	successor	nodes	and	to	add	
them	to	the	fronFer.	

•  A	goal	test	is	a	funcFon	applied	to	a	state	to	
determine	whether	its	associated	node	is	a	
goal	node	

SoluFons	in	Search	Trees	

•  A	soluFon	is	either	
– A	sequence	of	operators	that	is	associated	with	a	
path	from	start	state	to	goal	or	

– A	state	that	saFsfies	the	goal	test	
•  The	cost	of	a	soluFon	is	the	sum	of	the	edge	
costs	on	the	soluFon	path	
–  If	all	edges	have	the	same	(unit)	cost,	then	the	
soluFon	cost	is	just	the	length	of	the	soluFon	(i.e.,	
the	length	of	the	path)	

2/8/17	

5	

Framing	a	Problem	as	Search	

•  8	Queens	
– States?	
– Goal	test?	
– Operators?	

