Classifier Learning: Induction of Decision Trees

Andrea Danyluk April 10, 2017

Announcements

- Programming Assignment 4: Filtering
 - Due tomorrow.
 - Will send out the link for code review sign-up. If you haven't done two code reviews, please sign up.
- Final project
 - Discuss ideas with me this week.
 - Will post the full schedule/deliverables on Wednesday.

Today's Lecture

- Classifier learning: decision trees
- Note that the original syllabus said neural nets first. Switching the order.

Machine Learning includes...

- · Learning how to do something
- Learning how to do something better
- Learning new facts
- ...

Supervised Classifier Learning

- In the category of "learning new facts"
- Inductive
 - Algorithm induces a general rule (or set of general rules) from a set of observed instances
 - No explicit background knowledge about the domain of application
- Supervised
 - Given a set of training examples (x, y), where x is a feature vector describing an example and y is its class

Inductive = Knowledge-free?

- A possible claim: inductive classifier learners make no use of explicit background knowledge about the domain
- Not exactly: the attributes describing the examples are provided
 - Feature engineering is non-trivial

Inductive Bias

- The learned representation is set by the algorithm
- How the training examples are used is determined by the algorithm
- Many other ways in which the learning is influenced
- Any preference for one hypothesis over another, beyond mere consistency with the examples, is called a **bias**

Send patient home from hospital post-op?

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes

Learn a classifier that, given a new patient, will determine whether the patient should be sent home or not.

Entropy

A measure of the disorder/impurity of a set of examples.

- Let T be our set of training examples.
- Let ${\rm C_1,\,C_2,\,...,\,C_n}$ be the class labels assigned to examples in T.
- Let $|\mathsf{T}|$ be the number of examples in the training set.

 $Entropy(T) = -\sum_{i}(freq(C_{i},T)/|T|) * \log_{2}(freq(C_{i},T)/|T|)$

Just one way to think about the entropy measure

- Say I have a bag of 100 marbles.
 99 are blue
 - 1 is red
- If I pull out a marble and announce that it's blue, that's not very informative.
 -log, (freq(C,T)/|T|) bits
 - High probability corresponds to low information
- If I pull out a marble and announce that it's red, that's much more interesting, but it will only happen 1/100 of the time.

Information Gain

- Select the test that decreases entropy most.
- Let X be an attribute.
 - Say that X is discrete-valued and has n possible values.
 If X were selected as a test, we would create a decision node with n branches.
- Let j be a possible value of X. Let T_j be the examples that have value j for attribute X.
- We can compute the average entropy that results from making this split:

 $Entropy_X(T) = \Sigma_j(|T_j|/|T| * Entropy(T_j))$

Gain(T, X) = Entropy(T) - Entropy_x(T)

Choose the attribute with the greatest gain.

ing the hos	pital-releas	e tree
Family at Home?	Old?	Send Home?
No	Yes	No
No	No	No
No	Yes	No
Yes	Yes	Yes
No	No	Yes
	Family at Home? No No Yes No	Family at Home? Old? No Yes No Yes Yes Yes Yes Yes No No

Entropy = - ($3/5 \log_2 3/5 + 2/5 \log_2 2/5$) = 0.6 * .74 + 0.4 * 1.32 = .972

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes
Entropy _{Maj}	orOperation		

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes

Entropy = .972

 $\mathsf{Entropy}_{\mathsf{MajorOperation}}$

Gain = .432

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes
Entropy _{Fam}	ilyAtHome		
FamilyAtHome=Yes: Entropy = 0 FamilyAtHome=No: - (1/4 log ₂ 1/4 + 3/4 log ₂ 3/4) = .81			

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes
Entropy _{Fan}	nilyAtHome		
	= 1/5 * 0 + 4	4/5 * .81	
	= .648		

Gain = .324

Major Operation?	Family at Home?	Old?	Send Home?
Yes	No	Yes	No
Yes	No	No	No
No	No	Yes	No
No	Yes	Yes	Yes
No	No	No	Yes
Entropy =	.972		
Entropy _{Old}			

Major Operation? Yes No No Entropy = .	Family at Home? No No No Yes No 972	Old? Yes No Yes Yes No	Send Home? No No No Yes Yes
Yes No No Entropy = . Entropy _{Old}	No No Yes No 972	Yes No Yes Yes No	No No Yes Yes
_{No} No Entropy = . Entropy _{Old}	No No Yes No 972	No Yes Yes No	No No Yes Yes
NO NO Entropy = . Entropy _{Old}	No Yes No 972	Yes Yes No	No Yes Yes
^{No} Entropy = . Entropy _{Old}	Yes No 972	Yes No	Yes Yes
_№ Entropy = . Entropy _{Old}	^{No}	No	Yes
Entropy = . Entropy _{Old}	972		
:	= 3/5 *.9042 = .942	+ 2/5 * 1	
Gain = .03			

Decision Trees on Real Problems

- How do we assess a decision tree's performance?
- How do we handle attributes with numeric values?
- Missing attribute values?
- How do we handle noise?
- Bias in attribute selection?

Assessing Performance

- Performance task is to predict the classes of unseen examples.
- Assessing the quality of the decision tree involves checking its classifications of labeled test examples.
- Requires that we leave some of our data out of the training set, so that we can test with it.