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With thanks to CS188 slides.

Announcements

* Filtering assignment

— Due Tuesday
* Start thinking about final projects
* Returning midterms today

Today’s Lecture

* HMMs
* Filtering

Probability Recap

= Conditional probability p(Ly)
P(y)
* Chainrule p(x; X,...X,) = P(X1)P(X5|X1)P(X3/X1,Xp)...
= [ P(XilXy,.. ., Xi1)

= X andY are conditionally independent given Z if and
only if:
P(X]Y,Z) = P(X|Z) and P(Y[X,Z) = P(Y|Z)
P(X, Y|Z) = P(X|Z)P(Y|2)
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Hidden Markov Models

* Underlying Markov chain over states S

* You observe outputs (effects) at each time
step

* A Dynamic Bayesian network
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An HMM is defined by:
Initial distribution: ~ P(X,)
Transitions: P(X,1%0)
Emissions: P(E,IX,)

Conditional Independence

* HMMs have two important independence
properties
— Markov hidden process: Future depends on the
past via the present
— Current observation (emission) is independent of
all else given the current state

Filtering = State Estimation

* Process of computing the belief state
(posterior distribution over the most recent
state), given evidence to date

* Begin with P(X) in an initial setting, usually
uniform

* As time passes/get observations update belief
state

Chain Rule and HMMs

From the chain rule, every joint distribution over X1, E1,..., Xr. Er

can be written as: T

P(X0,Brveoo, Xr. Er) = PUGYPUR ) [[ PGS, B Xios B )PAEL Xy B K B, X0
=2

We assume that for all t:
— State independent of all past states and all past evidence given the
previous state
— Evidence is independent of all past states and all past evidence given the
current state

* This gives us the following expression:
T

P(Xy, Ey,..., Xr, Er) = P(X,)P(Ey|X,) [] P(Xi[ ;1) P(E:|X,)
t=2

Example: Robot Localization

X, is the location of the robot. Domain is the set of blue squares

Don’t know where robot starts; assume uniform distribution over all squares
Sensor model: 4 bits (whether a wall in each direction); each sensor’s error
rateis e

Neighbors(s) is a set of empty squares adjacent to s

Equally likely to move in any valid direction

Inference: Base Cases

* Observation
— Given: P(X,), P(e;|X,)
— Query: P(x, | e,) for all x;

¢ Passage of Time
— Given: P(X,), P(X,|X,)
— Query: P(x,) for all x,

0—0

P(x,le;) = P(ey,x,) / Ple;)
[Normalization step: do at the end.] P(x,) =2
Focus on:

P(e1]x;) P(xy)

P(x, 1) P(x,)

allx1
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Generalizing: Passage of Time

« Assume we have current belief P(X | evidence to date)

B(X) = P(X;le,) @

* Then, after one time step passes:

P(X.1lery)
=2 i P %) Plxcleyy)
=2 aixe P(Xeaa %) Blx,)

Generalizing: Observation

* Assume we have current belief P(X | previous evidence):
* B'(Xia) = P(Xeirleq)
* Then, after evidence comes in:

P(Xe1l€101) = P(Xess gl 1) / Plegileg)

= Basic idea: beliefs
“reweighted” by
likelihood of evidence

= Unlike passage of time,
we have to
renormalize

o P(Xiys €plegy)

o P(ey, | Xey) Py | €1

= aP(ey;Xi) B'(Xys)

Particle Filtering

Sometimes |X| is too big to use exact inference
Solution: approximate inference

— Track samples of X ; not all values

— Aim for N << |X]|

— Samples are called particles

— In memory, maintain a list of particles

— Time per step is linear in the number of samples

— Note: number of samples needed may still be large
* Robot localization

— Remember the soccer-playing dogs?

Particle Filtering

* P(x) is approximated by the number of
particles with value x

* Many x will have P(x) =0

Particle Filtering

Particles: (1,2) (1,3) (5,2) (5,3) (7,2) (7,2) (7,3) (7,4) (7,4) (7.4)

Particle Filtering: Passage of Time

<

Move each particle by sampling its position from the transition model:
x" = sample(P(X’|x))

This gives us a new set of N particles.
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Particle Filtering: Observation

-~ o

Weight each particle based on the evidence:

weight(x) = P(e|x)

B(X) = a P(e|X)B'(X) Recall B'(X,,;) = P(X,; | €1)

Particle Filtering: Resampling

* Now sample N particles from the weighted particle list

* This essentially re-normalizes the distribution

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple
sources of evidence
* |dea: Repeat a fixed Bayes Net structure at each time

Variables from time t can condition on those from t-1
t=1 t=2 t=3

C e
OO ®®

Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

* Now a single particle is a complete sample for
a time step

Initialize: Generate samples/particles for time
t=1

For example, if we're determining P(X), P(Y)
and both X and Y are over domains of
positions in our “map”, then our particles
might be

((1,2),(1,2)), ((1,3),(1,2)), ((52),(51)), etc.

DBN Particle Filters: Cont’d

Passage of time: Sample a successor for each particle
((1,2), (1,2)) => ((1,3), (1,2))

((1,3), (1,2)) => ((1,3), (1,3))

etc

Observation: Weight each entire sample by the
likelihood of the evidence conditioned on the sample
— Likelihood: P(E;® | G;2) * P(E,b | G,P)

Resample

— Selected samples (complete tuples) in proportion to their
likelihood

Some Applications

* Robot localization

* Speech recognition

* Sequence alignment

* Computational finance

* Healthcare risk modeling
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