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Hidden	Markov	Models	
Filtering	

Andrea	Danyluk	
April	7,	2017	

With	thanks	to	CS188	slides.		

Announcements	

•  Filtering	assignment		
– Due	Tuesday	

•  Start	thinking	about	final	projects	
•  Returning	midterms	today	
	

Today’s	Lecture	

•  HMMs	
•  Filtering	

Probability	Recap	

§  CondiNonal	probability	
	
	

§  Chain	rule		
	
	

	
	

§  X	and	Y	are	condiNonally	independent	given	Z	if	and	
only	if:	

	
P(X|Y,Z)	=	P(X|Z)	and	P(Y|X,Z)	=	P(Y|Z)	
P(X,	Y|Z)	=	P(X|Z)P(Y|Z)	

Hidden	Markov	Models	
•  Underlying	Markov	chain	over	states	S	
•  You	observe	outputs	(effects)	at	each	Nme	
step	

•  A	Dynamic	Bayesian	network	
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Hidden	Markov	Models	
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Diseaset-1	 Diseaset	 Diseaset+1	

Testt-1	 Testt	 Testt+1	

Dt-1	 P(dt|Dt-1)	

d	 .99	

¬d	 0.2	

Dt	 P(tt|Dt)	

d	 0.9	

¬d	 0.05	

An	HMM	is	defined	by:	
	IniNal	distribuNon:	 	P(X1)	
	TransiNons:	 	 	 	P(Xn|Xn-1)	
	Emissions:		 	 	 	P(En|Xn)	

CondiNonal	Independence	

•  HMMs	have	two	important	independence	
properNes	
– Markov	hidden	process:	Future	depends	on	the	
past	via	the	present	

– Current	observaNon	(emission)	is	independent	of	
all	else	given	the	current	state		

Filtering	=	State	EsNmaNon	

•  Process	of	compuNng	the	belief	state	
(posterior	distribuNon	over	the	most	recent	
state),	given	evidence	to	date	

•  Begin	with	P(X)	in	an	iniNal	secng,	usually	
uniform	

•  As	Nme	passes/get	observaNons	update	belief	
state		

Chain	Rule	and	HMMs	

•  From	the	chain	rule,	every	joint	distribuNon	over																																									
can	be	wriden	as:	

	

•  We	assume	that	for	all	t:		
–  State	independent	of	all	past	states	and	all	past	evidence	given	the	

previous	state	
–  Evidence	is	independent	of	all	past	states	and	all	past	evidence	given	the	

current	state	

•  This	gives	us	the	following	expression:	

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

X2	

E1	

X1	 X3	

E2	 E3	

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)

Example:	Robot	LocalizaNon	

Xt	is	the	locaNon	of	the	robot.		Domain	is	the	set	of	blue	squares	
Don’t	know	where	robot	starts;	assume	uniform	distribuNon	over	all	squares	
Sensor	model:	4	bits	(whether	a	wall	in	each	direcNon);	each	sensor’s	error	
rate	is	ε	
Neighbors(s)	is	a	set	of	empty	squares	adjacent	to	s	
Equally	likely	to	move	in	any	valid	direcNon	

Inference:	Base	Cases	

•  ObservaNon	
–  Given:	P(X1),	P(e1|X1)	
–  Query:	P(x1|e1)	for	all	x1	

•  Passage	of	Time	
–  Given:	P(X1),	P(X2|X1)	
–  Query:	P(x2)	for	all	x2	

P(x1|e1)	=	P(e1,x1)	/	P(e1)	
[NormalizaNon	step:	do	at	the	end.]	

Focus	on:	
P(e1|x1)	P(x1)	

X1	

E1	

X1	 X2	

P(x2)	=	Σ	all	x1	P(x2|x1)	P(x1)	
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Generalizing:	Passage	of	Time	
•  Assume	we	have	current	belief	P(X	|	evidence	to	date)	

B(Xt)	=	P(Xt|e1:t)	
•  Then,	aqer	one	Nme	step	passes:	
	

	P(Xt+1|e1:t)		
	 	 	 	=	Σ	all	xt	P(Xt+1|xt)	P(xt|e1:t)	
	 	 	 	=	Σ	all	xt	P(Xt+1|xt)	B(xt)	

	
	

X2	X1	

Generalizing:	ObservaNon	
•  Assume	we	have	current	belief	P(X	|	previous	evidence):	

•  B’(Xt+1)	=	P(Xt+1|e1:t)	

•  Then,	aqer	evidence	comes	in:	
	
P(Xt+1|e1:t+1)	=	P(Xt+1,	et+1|e1:t)	/	P(e1:t+1|e1:t)		
	
=		α		P(Xt+1,	et+1|e1:t)		

=		α	P(et+1|Xt+1)	P(Xt+1	|	e1:t)		
	
=		α	P(et+1|Xt+1)	B’(Xt+1)		

§  Basic	idea:	beliefs	
“reweighted”	by	
likelihood	of	evidence	

§  Unlike	passage	of	Nme,	
we	have	to	
renormalize	

ParNcle	Filtering	
•  SomeNmes	|X|	is	too	big	to	use	exact	inference	
•  SoluNon:	approximate	inference	
–  Track	samples	of	X	;	not	all	values	
– Aim	for	N	<<	|X|	
–  Samples	are	called	parNcles	
–  In	memory,	maintain	a	list	of	parNcles	
–  Time	per	step	is	linear	in	the	number	of	samples	
– Note:	number	of	samples	needed	may	sNll	be	large	

•  Robot	localizaNon	
–  Remember	the	soccer-playing	dogs?	

ParNcle	Filtering	

•  P(x)	is	approximated	by	the	number	of	
parNcles	with	value	x	

•  Many	x	will	have	P(x)	=	0	

ParNcle	Filtering	

ParNcles:	(1,2)		(1,3)		(5,2)		(5,3)		(7,2)		(7,2)		(7,3)		(7,4)		(7,4)		(7,4)	

ParNcle	Filtering:	Passage	of	Time	

Move	each	par1cle	by	sampling	its	posiNon	from	the	transiNon	model:	
	

	 	 	 	 	 	x’	=	sample(P(X’|x))	
	
This	gives	us	a	new	set	of	N	parNcles.	
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ParNcle	Filtering:	ObservaNon	

Weight	each	par1cle	based	on	the	evidence:	
	

	weight(x)	=	P(e|x)	
	

	B(X)	=	α	P(e|X)B’(X)	 	 	 	Recall	B’(Xt+1)	=	P(Xt+1|e1:t)	

ParNcle	Filtering:	Resampling	

•  Now	sample	N	parNcles	from	the	weighted	parNcle	list	

•  This	essenNally	re-normalizes	the	distribuNon	

Dynamic	Bayes	Nets	(DBNs)	
•  We	want	to	track	mulNple	variables	over	Nme,	using	mulNple	

sources	of	evidence	

•  Idea:	Repeat	a	fixed	Bayes	Net	structure	at	each	Nme	

•  Variables	from	Nme	t	can	condiNon	on	those	from	t-1	

	
	

•  Dynamic	Bayes	nets	are	a	generalizaNon	of	HMMs	

G1
a	

E1a	 E1b	

G1
b	

t	=1	

G2
a	

E2a	 E2b	

G2
b	

G3
a	

E3a	 E3b	

G3
b	

t	=3	t	=2	

DBN	ParNcle	Filters	

•  Now	a	single	parNcle	is	a	complete	sample	for	
a	Nme	step	

•  IniNalize:	Generate	samples/parNcles	for	Nme	
t=1	

•  For	example,	if	we’re	determining	P(X),	P(Y)	
and	both	X	and	Y	are	over	domains	of	
posiNons	in	our	“map”,	then	our	parNcles	
might	be	
	((1,2),	(1,2)),			((1,3),	(1,2)),			((5,2),	(5,1)),		etc.	

DBN	ParNcle	Filters:	Cont’d	

•  Passage	of	Nme:	Sample	a	successor	for	each	parNcle	
((1,2),	(1,2))	=>	((1,3),	(1,2))	
((1,3),	(1,2))	=>	((1,3),	(1,3))	
etc	

•  ObservaNon:	Weight	each	enNre	sample	by	the	
likelihood	of	the	evidence	condiNoned	on	the	sample	
–  Likelihood:	P(E1a	|	G1

a)	*	P(E1b	|	G1
b)	

•  Resample	
–  Selected	samples	(complete	tuples)	in	proporNon	to	their	
likelihood	

Some	ApplicaNons	

•  Robot	localizaNon	
•  Speech	recogniNon	
•  Sequence	alignment	
•  ComputaNonal	finance	
•  Healthcare	risk	modeling	


