Hidden Markov Models
Filtering
Andrea Danyluk
April 7, 2017
with thanks to cs188 slides.

Announcements

- Filtering assignment
- Due Tuesday
- Start thinking about final projects
- Returning midterms today

Today's Lecture

- HMMs
- Filtering

Probability Recap

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Chain rule $\quad P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right)$..

$$
=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- X and Y are conditionally independent given Z if and only if:

Hidden Markov Models

- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- A Dynamic Bayesian network

Filtering = State Estimation

- Process of computing the belief state (posterior distribution over the most recent state), given evidence to date
- Begin with $P(X)$ in an initial setting, usually uniform
- As time passes/get observations update belief state

Conditional Independence

- HMMs have two important independence properties
- Markov hidden process: Future depends on the past via the present
- Current observation (emission) is independent of all else given the current state

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, \ldots, X_{T}, E_{T}$ can be written as
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}\right) P\left(E_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}, X_{t}\right)$
- We assume that for all t
- State independent of all past states and all past evidence given the previous state
- Evidence is independent of all past states and all past evidence given the current state
- This gives us the following expression:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$

Generalizing: Passage of Time

- Assume we have current belief $P(X \mid$ evidence to date) $\mathrm{B}\left(\mathrm{X}_{\mathrm{t}}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{e}_{1: t}\right)$
- Then, after one time step passes:

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{X}_{\mathrm{t}+1} \mid \mathrm{e}_{1: t}\right) & \\
& =\Sigma_{\text {all } x t} \mathrm{P}\left(\mathrm{X}_{t+1} \mid x_{t}\right) \mathrm{P}\left(x_{t} \mid \mathrm{e}_{1: t}\right) \\
& =\Sigma_{\text {all } x t} \mathrm{P}\left(\mathrm{X}_{t+1} \mid x_{t}\right) \mathrm{B}\left(x_{t}\right)
\end{aligned}
$$

Particle Filtering

- Sometimes $|\mathrm{X}|$ is too big to use exact inference
- Solution: approximate inference
- Track samples of X; not all values
- Aim for $\mathrm{N} \ll|\mathrm{X}|$
- Samples are called particles
- In memory, maintain a list of particles
- Time per step is linear in the number of samples
- Note: number of samples needed may still be large
- Robot localization
- Remember the soccer-playing dogs?

Generalizing: Observation

- Assume we have current belief $P(X \mid$ previous evidence $)$:
- $B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1 . t}\right)$
- Then, after evidence comes in:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{1: t+1} \mid e_{1: t}\right)$
$=\alpha P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \quad$ Basic idea: beliefs "reweighted" by likelihood of evidence
$=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- Unlike passage of time, we have to
$=\alpha P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)$ renormalize

Particle Filtering

- $P(x)$ is approximated by the number of particles with value x
- Many x will have $P(x)=0$

Particle Filtering: Passage of Time

Move each particle by sampling its position from the transition model:

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

This gives us a new set of N particles.

Particle Filtering: Resampling

- Now sample N particles from the weighted particle list
- This essentially re-normalizes the distribution

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes Net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- Now a single particle is a complete sample for a time step
- Initialize: Generate samples/particles for time $\mathrm{t}=1$
- For example, if we're determining $\mathrm{P}(\mathrm{X}), \mathrm{P}(\mathrm{Y})$ and both X and Y are over domains of positions in our "map", then our particles might be
$((1,2),(1,2)), \quad((1,3),(1,2)), \quad((5,2),(5,1))$, etc.

DBN Particle Filters: Cont'd

- Passage of time: Sample a successor for each particle
((1,2), (1,2)) => ((1,3), (1,2))
$((1,3),(1,2))=>((1,3),(1,3))$
etc
- Observation: Weight each entire sample by the likelihood of the evidence conditioned on the sample - Likelihood: $P\left(E_{1}{ }^{a} \mid G_{1}{ }^{a}\right) * P\left(E_{1}{ }^{\text {b }} \mid G_{1}{ }^{\text {b }}\right)$

Some Applications

- Robot localization
- Speech recognition
- Sequence alignment
- Computational finance
- Healthcare risk modeling
- Resample
- Selected samples (complete tuples) in proportion to their likelihood

