Hidden Markov Models

Andrea Danyluk April 3, 2017

With thanks to CS188 slides, as well as content from University of Washington CSE515, Penn State Stats, Yale University Stats, and others.

Announcements

- Filtering assignment is posted
- Start thinking about final projects
- Will return midterm exams no later than Friday

Today's Lecture

- Quick review/reminders
- Hidden Markov Models

Probabilistic Reasoning

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - Model: Agent knows something about how the known variables related to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Joint Distributions

A joint distribution over a set of random variables $X_1, X_2,...$ X_n specifies a probability for each possible outcome (i.e., assignment).

	female	male	
kate	0.04	0.0	P(kim < male) = 0.01
kim	0.02	0.01	
michael	0.01	0.1	P(kim, male) = 0.01
tom	0.0	0.05	
other	0.43	.34	

If these are all the random variables in the "world", then this table gives the full joint probability distribution. All entries sum to 1.

Events

- From a joint probability distribution, can calculate the probability of any event
 - P(kate)? P(male)?
 - P(michael ^ female)?
 - P(kate v kim)?

	female	male	
kate	0.04	0.0	
kim	0.02	0.01	
michael	0.01	0.1	
tom	0.0	0.05	
Other	0.43	.34	

Conditional Independence

- Say we have three random variables: R = rash; T = test for a particular disease; D = the disease, which sometimes causes a rash.
- We can say that R and T are conditionally independent, given information about D.
- P(R|T,D) = P(R|D). That is, if I have the disease, the probability that I expect a rash does not depend on how the test turns out.
 P(T|R,D) = P(T|D)
 - P(R, T|D) = P(R|D)P(T|D)
- We say T and R are conditionally independent given D.

Bayesian Network

- Concise representation for a joint probability distribution
- Explicitly represents dependencies among random variables

Space and Time

- Bayesian networks are generally much more compact than the full joint probability distribution
 - Joint distribution: O(2ⁿ)
 - Bayes net: O(n2^k), where k is the max # parents a node can have
- But the complexity of inference is still exponential in the number of random variables in the worst case

Reasoning over Time

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - Medical monitoring
- Need to introduce time into our models
- Basic approach: Hidden Markov Models (HMMs)
- More general: dynamic Bayesian networks

Conditional Independence

- HMMs have two important independence properties
 - Markov hidden process: Future depends on the past via the present
 - Current observation (emission) is independent of all else given the current state

Filtering = State Estimation

- Process of computing the belief state (posterior distribution over the most recent state), given evidence to date
- Begin with P(X) in an initial setting, usually uniform
- As time passes/get observations update belief state

