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Hidden	Markov	Models	

Andrea	Danyluk	
April	3,	2017	

With	thanks	to	CS188	slides,	as	well	as	content	from	University	of	Washington	CSE515,	
Penn	State	Stats,	Yale	University	Stats,	and	others.		

Announcements	

•  Filtering	assignment	is	posted	
•  Start	thinking	about	final	projects	
•  Will	return	midterm	exams	no	later	than	
Friday	

	

Today’s	Lecture	

•  Quick	review/reminders	
•  Hidden	Markov	Models	

ProbabilisVc	Reasoning	

•  General	situaVon:	
– Observed	variables	(evidence):	Agent	knows	certain	
things	about	the	state	of	the	world	(e.g.,	sensor	
readings	or	symptoms)	

– Unobserved	variables:	Agent	needs	to	reason	about	
other	aspects	(e.g.,	where	an	object	is	or	what	disease	
is	present)	

– Model:	Agent	knows	something	about	how	the	known	
variables	related	to	the	unknown	variables	

•  ProbabilisVc	reasoning	gives	us	a	framework	for	
managing	our	beliefs	and	knowledge	

Joint	DistribuVons	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

other	 0.43	 .34	

P(kim	∧	male)	=	0.01	

If	these	are	all	the	random	variables	in	the	“world”,	then	this	table	gives	the	full	joint	
probability	distribuVon.		All	entries	sum	to	1.	

A	joint	distribuVon	over	a	set	of	random	variables	X1,	X2,…	
Xn	specifies	a	probability	for	each	possible	outcome	(i.e.,	
assignment).	

P(kim,	male)	=	0.01	

Events	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

•  From	a	joint	probability	distribuVon,	can	
calculate	the	probability	of	any	event	
– P(kate)?	P(male)?	
– P(michael	∧	female)?	
– P(kate	∨		kim)?	
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CondiVonal	(Posterior)	ProbabiliVes	
A	simple	relaVonship	between	joint	and	condiVonal	
probabiliVes	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

P(female|michael)		
	

	=	(female,	michael)	/	P(michael)	
	

	=	0.01	/	0.11	
	

	=	0.09	
	
“given	that	michael	is	all	I	know,	what	is	the	
probability	that	you’re	female”		

CondiVonal	DistribuVons	
CondiVonal	distribuVons	are	probability	distribuVons	
over	some	variables	given	fixed	values	of	others.	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

P(Name|Sex)	

S=f	

kate	 0.08	

kim	 0.04	

michael	 0.02	

tom	 0.0	

Other	 0.86	

S=m	

kate	 0.0	

kim	 0.02	

michael	 0.2	

tom	 0.1	

Other	 .68	

CondiVonal	Independence	

•  Say	we	have	three	random	variables:	R	=	rash;	T	=	test	
for	a	parVcular	disease;	D	=	the	disease,	which	
someVmes	causes	a	rash.	

•  We	can	say	that	R	and	T	are	condiVonally	independent,	
given	informaVon	about	D.	

•  P(R|T,D)	=	P(R|D).		That	is,	if	I	have	the	disease,	the	
probability	that	I	expect	a	rash	does	not	depend	on	
how	the	test	turns	out.	
–  P(T|R,D)	=	P(T|D)	
–  P(R,	T|D)	=	P(R|D)P(T|D)	

•  We	say	T	and	R	are	condiVonally	independent	given	D.	

Bayesian	Network	

•  Concise	representaVon	for	a	joint	probability	
distribuVon	

•  Explicitly	represents	dependencies	among	
random	variables	

Excessive	Milk	
ConsumpVon	

Disease	D	
mimic	Disease	D	

PosiVve	test	T	

Recent	Sun	
Exposure	

D	 Dm	 P(t|D,	Dm)	

d	 dm	 .95	

d	 ¬dm	 .80	

¬d	 dm	 .10	

¬d	 ¬dm	 .05	

M	 P(d|M)	

m	 .90	

¬m	 .05	

S	 P(dm|S)	

s	 .70	

¬s	 .01	

P(m)	

.40	

P(s)	

.70	

A	paVent	tests	posiVve	for	
Disease	D.		The	paVent	also	
reports	drinking	a	great	deal	
of	milk.	
What’s	the	probability	that	
the	paVent	has	Disease	D?	

Probability	Recap	

§  CondiVonal	probability	

§  Product	rule	

§  Chain	rule		
	
	
	

§  X,	Y	independent	if	and	only	if:	

§  X	and	Y	are	condiVonally	independent	given	Z	if	and	
only	if:	
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Space	and	Time	

•  Bayesian	networks	are	generally	much	more	
compact	than	the	full	joint	probability	
distribuVon	
–  Joint	distribuVon:	O(2n)	
– Bayes	net:	O(n2k),	where	k	is	the	max	#	parents	a	
node	can	have	

•  But	the	complexity	of	inference	is	sVll	
exponenVal	in	the	number	of	random	
variables	in	the	worst	case	

Reasoning	over	Time	

•  Omen,	we	want	to	reason	about	a	sequence	of	
observaVons	
– Speech	recogniVon	
– Robot	localizaVon	
– Medical	monitoring	

•  Need	to	introduce	Vme	into	our	models	
•  Basic	approach:	Hidden	Markov	Models	
(HMMs)	

•  More	general:	dynamic	Bayesian	networks	

Markov	Models	

•  A	Markov	Model	is	a	chain-structured	
Bayesian	network	

•  Value	of	X	at	a	given	Vme	is	called	the	state	
•  Parameters:		
•  IniVal	probabiliVes	
•  transiVon	probabiliVes	specify	how	the	state	
evolves	over	Vme	

X1	 X2	 X3	

P(X1)	 P(Xt|Xt-1)	

Hidden	Markov	Models	
•  Markov	chains	not	terribly	useful	for	most	agents	
– At	some	point,	stop	knowing	anything	
– Need	observaVons	to	update	beliefs	

•  Hidden	Markov	Models	(HMMs)	
– Underlying	Markov	chain	over	states	S	
– You	observe	outputs	(effects)	at	each	Vme	step	
– As	a	Bayesian	network	

X1	 X2	 X3	

E2	 E3	

Raint-1	 Raint	 Raint+1	

Umbrellat-1	 Umbrellat	 Umbrellat+1	

Raint-1	 P(rt|Raint-1)	

r	 0.7	

¬r	 0.3	

Raint	 P(ut|Raint)	

r	 0.9	

¬r	 0.2	

An	HMM	is	defined	by:	
	IniVal	distribuVon:	 	P(X1)	
	TransiVons:	 	 	 	P(X|X-1)	
	Emissions:		 	 	 	P(E|X)	

Diseaset-1	 Diseaset	 Diseaset+1	

Testt-1	 Testt	 Testt+1	

Dt-1	 P(dt|Dt-1)	

d	 .99	

¬d	 0.2	

Dt	 P(tt|Dt)	

d	 0.9	

¬d	 0.05	

An	HMM	is	defined	by:	
	IniVal	distribuVon:	 	P(X1)	
	TransiVons:	 	 	 	P(X|X-1)	
	Emissions:		 	 	 	P(E|X)	
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CondiVonal	Independence	

•  HMMs	have	two	important	independence	
properVes	
– Markov	hidden	process:	Future	depends	on	the	
past	via	the	present	

– Current	observaVon	(emission)	is	independent	of	
all	else	given	the	current	state		

Filtering	=	State	EsVmaVon	

•  Process	of	compuVng	the	belief	state	
(posterior	distribuVon	over	the	most	recent	
state),	given	evidence	to	date	

•  Begin	with	P(X)	in	an	iniVal	setng,	usually	
uniform	

•  As	Vme	passes/get	observaVons	update	belief	
state		

•  From	the	chain	rule,	every	joint	distribuVon	over	
					can	be	wriuen	as:	

	

•  Assuming	that	
	
gives	us:		

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

X2	

E1	

X1	 X3	

E2	 E3	

Chain	Rule	and	HMMs	

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3

Chain	Rule	and	HMMs	

•  From	the	chain	rule,	every	joint	distribuVon	over																																									
can	be	wriuen	as:	

	

•  Assuming	that	for	all	t:		
–  State	independent	of	all	past	states	and	all	past	evidence	given	the	

previous	state,	i.e.:		

–  Evidence	is	independent	of	all	past	states	and	all	past	evidence	given	the	
current	state,	i.e.:	

					
					gives	us	the	expression	posited	on	the	earlier	slide:		

X1, E1, . . . , XT , ET

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|X1, E1, . . . , Xt�1, Et�1)P (Et|X1, E1, . . . , Xt�1, Et�1, Xt)

Xt ?? X1, E1, . . . , Xt�2, Et�2, Et�1 | Xt�1

X2	

E1	

X1	 X3	

E2	 E3	

Et ?? X1, E1, . . . , Xt�2, Et�2, Xt�1, Et�1 | Xt

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)

Example:	Robot	LocalizaVon	

Xt	is	the	locaVon	of	the	robot.		Domain	is	the	set	of	empty	squares	
Don’t	know	where	robot	starts;	assume	uniform	distribuVon	over	all	squares	
Sensor	model:	4	bits	(whether	a	wall	in	each	direcVon);	each	sensor’s	error	
rate	is	ε	
Neighbors(s)	is	a	set	of	empty	squares	adjacent	to	s	
Equally	likely	to	move	in	any	valid	direcVon	

Inference:	Base	Cases	

•  ObservaVon	
–  Given:	P(X1),	P(e1|X1)	
–  Query:	P(x1|e1)	for	all	x1	

•  Passage	of	Time	
–  Given:	P(X1),	P(X2|X1)	
–  Query:	P(x2)	for	all	x2	

P(x1|e1)	=	P(e1,x1)	/	P(e1)	
[NormalizaVon	step:	do	at	the	end.]	

Focus	on:	
P(e1|x1)	P(x1)	

X1	

E1	

X1	 X2	

P(x2)	=	Σ	all	x1	P(x2|x1)	P(x1)	
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Passage	of	Time	
•  Assume	we	have	current	belief	P(X	|	evidence	to	date)	

•  Then,	amer	one	Vme	step	passes:	
X2	X1	

=
X

xt

P (X
t+1, xt

|e1:t)

=
X

xt

P (X
t+1|xt

, e1:t)P (x
t

|e1:t)

=
X

xt

P (X
t+1|xt

)P (x
t

|e1:t)

§  Or	compactly:	
B

0(X
t+1) =

X

xt

P (X 0|x
t

)B(x
t

)

P (Xt+1|e1:t)

Basic	idea:	beliefs	get	“pushed”	through	the	transiVons	
With	the	“B”	notaVon,	we	have	to	be	careful	about	what	Vme	step	t	
the	belief	is	about,	and	what	evidence	it	includes	

	

ObservaVon	
•  Assume	we	have	current	belief	P(X	|	previous	evidence):	

•  Then,	amer	evidence	comes	in:	

•  Or,	compactly:	

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§  Basic	idea:	beliefs	
“reweighted”	by	
likelihood	of	evidence	

§  Unlike	passage	of	Vme,	
we	have	to	
renormalize	


