

Announcements

- Filtering assignment is posted
- Start thinking about final projects
- Will return midterm exams no later than Friday

Today's Lecture

- Quick review/reminders
- Hidden Markov Models

Probabilistic Reasoning

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
- Model: Agent knows something about how the known variables related to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Joint Distributions

A joint distribution over a set of random variables X_{1}, X_{2}, \ldots X_{n} specifies a probability for each possible outcome (i.e., assignment).

	female	male
kate	0.04	0.0
kim	0.02	0.01
michael	0.01	0.1
tom	0.0	0.05
other	0.43	.34

$\mathrm{P}($ kim \wedge male $)=0.01$
$P($ kim, male $)=0.01$ probability distribution. All entries sum to 1 .

Events

- From a joint probability distribution, can calculate the probability of any event
- P(kate)? P(male)?
$-P($ michael \wedge female)?
$-P($ kate v kim $)$?

	female	male
kate	0.04	0.0
kim	0.02	0.01
michael	0.01	0.1
tom	0.0	0.05
Other	0.43	.34

Conditional (Posterior) Probabilities

A simple relationship between joint and conditional probabilities

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

	female	male
kate	0.04	0.0
kim	0.02	0.01
michael	0.01	0.1
tom	0.0	0.05
Other	0.43	.34

P (female|michael)
$=$ (female, michael) / P(michael)
$=0.01 / 0.11$
$=0.09$
"given that michael is all I know, what is the probability that you're female"

Conditional Distributions

Conditional distributions are probability distributions over some variables given fixed values of others.

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

P(Name|Sex)

	female	male
kate	0.04	0.0
kim	0.02	0.01
michael	0.01	0.1
tom	0.0	0.05
Other	0.43	.34

	$\mathrm{S}=\mathrm{f}$
kate	0.08
kim	0.04
michael	0.02
tom	0.0
Other	0.86

	$\mathrm{S}=\mathrm{m}$
kate	0.0
kim	0.02
michael	0.2
tom	0.1
Other	.68

Conditional Independence

- Say we have three random variables: $\mathrm{R}=$ rash; $\mathrm{T}=$ test for a particular disease; $\mathrm{D}=$ the disease, which sometimes causes a rash.
- We can say that R and T are conditionally independent, given information about D.
- $P(R \mid T, D)=P(R \mid D)$. That is, if I have the disease, the probability that I expect a rash does not depend on how the test turns out.
$-P(T \mid R, D)=P(T \mid D)$
$-P(R, T \mid D)=P(R \mid D) P(T \mid D)$
- We say T and R are conditionally independent given D.

Bayesian Network

- Concise representation for a joint probability distribution
- Explicitly represents dependencies among random variables

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule $\quad P(x, y)=P(x \mid y) P(y)$
- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- X, Y independent if and only if:
$\forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Space and Time

- Bayesian networks are generally much more compact than the full joint probability distribution
- Joint distribution: $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- Bayes net: $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{k}}\right)$, where k is the max \# parents a node can have
- But the complexity of inference is still exponential in the number of random variables in the worst case

Reasoning over Time

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- Medical monitoring
- Need to introduce time into our models
- Basic approach: Hidden Markov Models (HMMs)
- More general: dynamic Bayesian networks

Markov Models

- A Markov Model is a chain-structured Bayesian network

- Value of X at a given time is called the state
- Parameters:
- Initial probabilities
- transition probabilities specify how the state evolves over time

Conditional Independence

- HMMs have two important independence properties
- Markov hidden process: Future depends on the past via the present
- Current observation (emission) is independent of all else given the current state

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}$ can be written as:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}, E_{1}\right) P\left(E_{2} \mid X_{1}, E_{1}, X_{2}\right)$ $P\left(X_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}\right) P\left(E_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}, X_{3}\right)$
$\dot{X_{2}} \Perp \stackrel{\text { sssuming }}{E_{1}}\left|X_{1}, \quad \stackrel{\text { that }}{E_{2} \Perp} X_{1}, E_{1}\right| X_{2}, \quad X_{3} \Perp X_{1}, E_{1}, E_{2}\left|X_{2}, \quad E_{3} \Perp X_{1}, E_{1}, X_{2}, E_{2}\right| X_{3}$ gives us:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$

Filtering $=$ State Estimation

- Process of computing the belief state (posterior distribution over the most recent state), given evidence to date
- Begin with $P(X)$ in an initial setting, usually uniform
- As time passes/get observations update belief state

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, \ldots, X_{T}, E_{T}$ can be written as:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}\right) P\left(E_{t} \mid X_{1}, E_{1}, \ldots, X_{t-1}, E_{t-1}, X_{t}\right)$
- Assuming that for all t :
- State independent of all past states and all past evidence given the previous state, i.e.:
$X_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$
- Evidence is independent of all past states and all past evidence given the current state, i.e.:
$E_{t} \Perp X_{1}, E_{1}, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_{t}$
gives us the expression posited on the earlier slide:
$P\left(X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$

X_{t} is the location of the robot. Domain is the set of empty squares Don't know where robot starts; assume uniform distribution over all squares Sensor model: 4 bits (whether a wall in each direction); each sensor's error rate is ε

Equally likely to move in any valid direction

Inference: Base Cases

- Observation
- Given: $P\left(X_{1}\right), P\left(e_{1} \mid X_{1}\right)$
- Query: $P\left(x_{1} \mid e_{1}\right)$ for all x_{1}

$\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{e}_{1}\right)=\mathrm{P}\left(\mathrm{e}_{1}, \mathrm{x}_{1}\right) / \mathrm{P}\left(\mathrm{e}_{1}\right)$
[Normalization step: do at the end.] $P\left(x_{2}\right)=\Sigma_{\text {all } \times 1} P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$
Focus on:
$P\left(e_{1} \mid x_{1}\right) P\left(x_{1}\right)$
- Passage of Time
- Given: $P\left(X_{1}\right), P\left(X_{2} \mid X_{1}\right)$
- Query: $P\left(x_{2}\right)$ for all x_{2}

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$P\left(X_{t+1} \mid e_{1: t}\right)=\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right)$

$$
\begin{aligned}
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned} \quad \text { ". Or compactly: } \quad \begin{array}{ll}
=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right) & B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
\end{array}
$$

Basic idea: beliefs get "pushed" through the transitions With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Observation

- Assume we have current belief $P(X \mid$ previous evidence):
$B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)$
- Then, after evidence comes in:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right)$
$\alpha_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right)$
$=P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
$=P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1 \cdot t}\right) \quad$ " \quad "rasic idea: beliefs "reweighted" by
- Or, compactly: likelihood of evidence
$B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right) \quad$ we have to we have to
renormalize

