Markov Models

Andrea Danyluk
March 17, 2017

With thanks to CS188 slides, as well as content from University of Washington CSE515, Penn State Stats, Yale University Stats, and others.

Announcements

- Filtering assignment after the break
- Start thinking about final projects

Today's Lecture

- Finish up a bit of "intro to probability"
- Markov Models

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- Sensors noisy, but we know P(Color|Distance)

Ghostbusters

- Say we have two distributions
- P(G): say it's uniform
- Sensor reading model $P(R \mid G)$
- Say we get a reading at $(1,1)$
- Can calculate the posterior distribution P(G|r) over all locations given the reading at $(1,1)$

- Sensor readings
- On the ghost (1 location): red
-1 or 2 away (5 locations): orange
-3 or 4 away (3 locations): yellow
- Sensors noisy

$\mathrm{P}($ red $\mid 0)$	P (orange $\mid 0$)	P (yellow $\mid 0$)
0.7	0.2	0.1
$\mathrm{P}($ red $\mid 1$ or 2)	P (orange $\mid 1$ or 2)	P (yellow $\mid 1$ or 2)
0.15	0.7	0.15

P (red \| 3 or 4)	P (orange \| 3 or 4)	P (yellow \| 3 or 4)
0.1	0.2	0.7

```
P(glyellow)
P(0 awaylyellow)
P(1-2 away |yellow)
P(3-4 away|yellow)
P(yellow)
```


Ghostbusters

- Say we have two distributions - P(G): say it's uniform
- Sensor reading model $P(R \mid G)$, where $R=$ reading at $(1,1)$
- Can calculate the posterior distribution P(G|r) over ghost locations given a reading at $(1,1)$

Intractability of Probabilistic Inference

- Size of full joint probability distribution over n (Boolean) random variables? -O(2 $\left.{ }^{\text {n }}\right)$
- Say we add a new random variable to the Ghostbusters problem: Is the number of students attending AI today > 15?
- 3 random variables:
- Ghost location
- Sensor reading
- Attendance > 15 ?
- Say we add a new random variable to the Ghostbusters problem: Is the number of students attending Al todav > 15?
- But what does attendance in Al have to do with Ghostbusters?

Probabilistic Independence

- It seems reasonable to assert that the number of students attending AI on any given day is unrelated to ghosts or sensor readings.
- If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X})$, we say X is independent of $\mathrm{Y}: X \Perp Y$ - Similarly, Y is independent of X. $-P(Y \mid X)=P(Y), P(X, Y)=P(X) P(Y)$
- This means the joint distribution factors into a product of two simpler distributions.
- Say we add a random variable to a "test and disease" problem domain: Does the patient have a rash? [And say that when a person has the disease, they tend to get a rash.]
- 3 Boolean variables:
- T: Test positive or negative
- D: Disease positive or negative
-R : Rash positive or negative
- $2^{3}=8$ entries in the full joint probability distribution

Conditional Independence

- This time we can't reasonably assert that R is independent of T or D.
- But we can say that R and T are conditionally independent, given information about D.
- $P(R \mid T, D)=P(R \mid D)$. That is, if I have the disease, the probability that I expect a rash does not depend on how the test turns out.
$-P(T \mid R, D)=P(D)$
$-P(R, T \mid D)=P(R \mid D) P(T \mid D)$
- We say T and R are conditionally independent given D.

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red B: Bottom sensor is red G: Ghost is in the top
- Queries: $\mathrm{P}(\mathrm{g})=$? $\mathrm{P}(\mathrm{g} \mid \mathrm{t})=$? $\mathrm{P}(\mathrm{g} \mid \mathrm{t}, \neg \mathrm{b})=$?
- What happens to the joint distribution when the game gets bigger than two squares?
[CS 188 Berkeley] Joint distribution too large/complex!

Model for Ghostbusters cont'd

- T: Top sensor is red

B: Bottom sensor is red
G: Ghost is in the top

- Each sensor depends only on where the ghost is
- Sensors are conditionally independent given the gh position
- Givens:
$\mathrm{P}(\mathrm{g})=0.5$
$\mathrm{P}(\mathrm{t} \mid \mathrm{g})=0.8$
$\mathrm{P}(\mathrm{t} \mid \neg \mathrm{g})=0.4$
$P(b \mid g)=0.4$
$\mathrm{P}(\mathrm{b} \mid \neg \mathrm{g})=0.8$

Joint Distribution			
T	B	G	$\mathrm{P}(\mathrm{T}, \mathrm{B}, \mathrm{G})$
t	b	g	0.16
t	b	$\rightarrow \mathrm{g}$	0.16
t	\rightarrow b	g	0.24
t	$\neg \mathrm{b}$	-g	0.04
$\rightarrow t$	b	g	0.04
\neg t	b	$\neg \mathrm{g}$	0.24
\rightarrow t	\rightarrow b	g	0.06
\rightarrow t	\neg b	$\rightarrow \mathrm{g}$	0.06

Bayesian Network

- Concise representation for a joint probability distribution
- Explicitly represents dependencies among random variables
$P(T, B, G)=P(T \mid G) P(B \mid G) P(G)$

Space and Time

- Bayesian networks are generally much more compact than the full joint probability distribution
- Joint distribution: O(2n)
- Bayes net: $\mathrm{O}\left(\mathrm{n} 2^{k}\right)$, where k is the max \# parents a node can have

Reasoning over Time

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- Medical monitoring
- Need to introduce time into our models
- Basic approach: Hidden Markov Models (HMMs)
- More general: dynamic Bayesian networks

Markov Models

- A Markov Model is a chain-structured Bayesian network

- Value of X at a given time is called the state
- Parameters:
- Initial probabilities
- transition probabilities specify how the state evolves over time

Joint Distribution of a Markov Model

- Joint distribution:
$P\left(x_{1}, x_{2}, \ldots x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{2}\right) \ldots P\left(x_{n} \mid x_{n-1}\right)$
- But can we really call this a joint distribution? $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=P\left(x_{n} \mid x_{1} \ldots x_{n-1}\right) P\left(x_{n-1} \mid x_{1} \ldots x_{n-2}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right)$

Conditional Independence

- Each time step only depends directly on the previous
- First order Markov property
- Past and future independent given the present
- Note that the chain is just a (growing) Bayesian net

Example Markov Chain: Weather

- Weather: $\mathrm{W}=\{$ rain, sun $\}$

[CS 188 Berkeley]

Example cont'd

- From initial observation of sun:
$\begin{array}{lllll}\text { Sun } 1.0 & 0.9 & 0.82 \ldots & 0.5\end{array}$
$\begin{array}{lllll}\text { Rain } 0.0 & 0.1 & 0.18 & \ldots & 0.5\end{array}$

If we simulate the chain long enough, uncertainty accumulates

