Probability, Markov Models

Andrea Danyluk March 15, 2017

With thanks to CS188 slides, as well as content from University of Washington CSE515, Penn State Stats, Yale University Stats, and others.

Announcements

 Programming Assignment 3: RL – Code reviews today

Today's Lecture

- Probability
 - Reminders
 - Exercises
 - Preparation for Markov Models

Uncertainty

 We don't always have complete/perfect information – yet we need to act/make decisions

Many ways to handle uncertainty

- Ignore it pretend that the world is completely and correctly specified and that no contingencies will arise
- Ad hoc solutions for example, in MAX
 - If mechanized loop test results appear "funny", perform retest
 - Assume that all data that look reasonable are accurate
 - Allow multiple conclusions to be reached
 - Attach rankings to rules to enable choice of one conclusion over another
- Incorporate probabilities into knowledge representation and reasoning

Probabilistic Reasoning

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - Model: Agent knows something about how the known variables related to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

[CS 188 Berkeley]

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - Voltage of a (wired) phone line?Will it snow today?
 - Where is Blinky?
 - What number will come up in the roll of a die?
- A random variable has a domain, i.e., a sample space of possible outcomes $\boldsymbol{\Omega}$
 - V in [0, 57]
 - S in {True, False}
 - B in {(0,1), (0,2), (1, 1), (1, 2)}
 - D in {1, 2, 3, 4, 5, 6}
 - D III (1, 2, 3, -

Random Variables

 If X is a random variable over sample space Ω, probability measure P defined on Ω induces a probability distribution on X

Prot Unobserved rand A probability dist	Dability Dis lom variables ha ribution = a tabl	t ributions ive distributions. e of probability values.
Sex	Р	7
female	0.5	P(Sex=female) = 0.5
male	0.5	
P(Sex=female) is Note: will abbrev	an unconditiona	 I or prior probability. when it is unambiguous.
Must have:		

 $\forall x \ P(X = x) \ge 0$ and $\sum_{x} P(X = x) = 1$

Joint Distributions

A joint distribution over a set of random variables $X_1, X_2,...$ X_n specifies a probability for each possible outcome (i.e., assignment).

	female	male	
kate	0.04	0.0	P(kim ∧ male) = 0.01
kim	0.02	0.01	
michael	0.01	0.1	P(kim, male) = 0.01
tom	0.0	0.05	
other	0.43	.34	

If these are all the random variables in the "world", then this table gives the full joint probability distribution. All entries sum to 1.

Probabilistic Models

A joint distribution over a set of random variables $X_1, X_2,...$ X_n specifies a probability for each possible outcome (i.e., assignment).

	female	male	
kate	0.04	0.0	P(kim < male) = 0.0
kim	0.02	0.01	
michael	0.01	0.1	P(kim, male) = 0.01
tom	0.0	0.05	
other	0.43	.34	

A probabilistic model is a joint distribution over a set of random variables.

Events

- From a joint probability distribution, can calculate the probability of any event
 - P(kate)? P(male)?
 - P(michael ^ female)?
 - P(kate v kim)?

	female	male	
kate	0.04	0.0	
kim	0.02	0.01	
michael	0.01	0.1	
tom	0.0	0.05	
Other	0.43	.34	

Events

- From a joint probability distribution, can calculate the probability of any event
 - P(kate)? P(male)?
 - P(michael ^ female)?

– P(kate v kim)?	Name	Sex	P(N_S)
, ,	Hume	Jen	. (., 5)
	kate	female	0.04
	kate	male	0.0
	kim	female	0.02
	kim	male	0.01
	michael	female	0.01
	michael	male	0.1
	other	female	0.43
	other	male	0.39

Atomic Events

- An atomic event is a complete specification of the state of the world

 An assignment of values to all random variables
- Joint probability distribution assigns probabilities to all possible atomic events.

Marginal Distributions

- Marginal distributions are subtables that eliminate variables.
- Marginalization is the process of combining collapsed rows/columns by summing them.

	female	male		kate		0.04
kate	0.04	0.0		kim		0.03
kim	0.02	0.01		micha	el	0.1
michael	0.01	0.1		tom		0.0
tom	0.0	0.05		Other		0.7
Other	0.43	.34				
			fen	nale	1	male
			0	.5		0.5

Marginal Distributions				
Name	Sex	P(N, S)	S	P(S)
kate	female	0.04	female	0.5
kate	male	0.0	male	0.5
kim	female	0.02		
kim	male	0.01		1
michael	female	0.01	N	P(N)
michael	male	0.1	kate	?
other	female	0.43	kim	?
other	male	0.39	michael	?
other	male	0.55	other	2

Conditional (Posterior) Probabilities

Probabilities change with new evidence:

P(female | michael) = 0.09

P(female|michael, bass-register voice) = 0.001

Useful Axioms, Definitions, and Rules

Definition of conditional probability:

 $P(a|b) = \frac{P(a,b)}{P(b)}$

Product rule:

P(a,b) = P(a|b)P(b) = P(b|a)P(a)

Chain rule: derived by successive applications of the product rule

 $P(x_1, x_2, x_3) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)$

$$\begin{split} & P(x_{1,}x_{2,}..x_{n}) = P(x_{n} \mid x_{1}...x_{n-1}) P(x_{n-1} \mid x_{1}...x_{n-2})...P(x_{2} \mid x_{1}) P(x_{1}) \\ & \text{Bayes rule:} \quad P(a|b) = P(b|a) P(a) \ / \ P(b) \end{split}$$

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- Sensors noisy, but we know P(Color|Distance)

Ghostbusters

- Say we have two distributions
 P(G): say it's uniform
- Sensor reading model P(R|G)Say we get a reading at (1,1)
- Can calculate the posterior distribution P(G|r) over all locations given the reading at

(1,1)

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

• Sensor readings - On the ghost (1 location): red - 1 or 2 away (5 locations): orange - 3 or 4 away (3 locations): yellow · Sensors noisy P(red | 0) P(orange | 0) P(yellow | 0) 0.7 0.2 0.1 P(red | 1 or 2) P(orange | 1 or 2) P(yellow | 1 or 2) 0.15 0.7 0.15 P(red | 3 or 4) P(orange | 3 or 4) P(yellow | 3 or 4) 0.1 0.2 0.7

[Adapted from CS 188 Berkeley]

P(g|yellow) P(0 away|yellow) P(1-2 away|yellow) P(3-4 away|yellow) P(yellow)