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Probability,	Markov	Models	

Andrea	Danyluk	
March	15,	2017	

With	thanks	to	CS188	slides,	as	well	as	content	from	University	of	Washington	CSE515,	
Penn	State	Stats,	Yale	University	Stats,	and	others.		

Announcements	

•  Programming	Assignment	3:	RL	
– Code	reviews	today	

	

Today’s	Lecture	

•  Probability	
– Reminders	
– Exercises	
– PreparaRon	for	Markov	Models	

Uncertainty	

•  We	don’t	always	have	complete/perfect	
informaRon	–	yet	we	need	to	act/make	
decisions	

Many	ways	to	handle	uncertainty	

•  Ignore	it	–	pretend	that	the	world	is	completely	and	
correctly	specified	and	that	no	conRngencies	will	arise	

•  Ad	hoc	soluRons	–	for	example,	in	MAX	
–  If	mechanized	loop	test	results	appear	“funny”,	perform	
retest	

–  Assume	that	all	data	that	look	reasonable	are	accurate	
–  Allow	mulRple	conclusions	to	be	reached	
–  AZach	rankings	to	rules	to	enable	choice	of	one	conclusion	
over	another	

•  Incorporate	probabiliRes	into	knowledge	
representa/on	and	reasoning	

ProbabilisRc	Reasoning	

•  General	situaRon:	
– Observed	variables	(evidence):	Agent	knows	certain	
things	about	the	state	of	the	world	(e.g.,	sensor	
readings	or	symptoms)	

– Unobserved	variables:	Agent	needs	to	reason	about	
other	aspects	(e.g.,	where	an	object	is	or	what	disease	
is	present)	

– Model:	Agent	knows	something	about	how	the	known	
variables	related	to	the	unknown	variables	

•  ProbabilisRc	reasoning	gives	us	a	framework	for	
managing	our	beliefs	and	knowledge	

[CS	188	Berkeley]	
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Random	Variables	
•  A	random	variable	is	some	aspect	of	the	world	
about	which	we	(may)	have	uncertainty	
–  Voltage	of	a	(wired)	phone	line?	
– Will	it	snow	today?	
– Where	is	Blinky?	
– What	number	will	come	up	in	the	roll	of	a	die?	

•  A	random	variable	has	a	domain,	i.e.,	a	sample	
space	of	possible	outcomes	Ω	
–  V	in	[0,	57]	
–  S	in	{True,	False}	
–  B	in	{(0,1),	(0,2),	(1,	1),	(1,	2)}	
– D	in	{1,	2,	3,	4,	5,	6}	

Random	Variables	

•  If	X	is	a	random	variable	over	sample	space	Ω,	
probability	measure	P	defined	on	Ω	induces	a	
probability	distribuRon	on	X		

Probability	DistribuRons	

Sex	 P	

female	 0.5	

male	 0.5	

P(Sex=female)	=	0.5	

Must	have:		

Unobserved	random	variables	have	distribuRons.	
A	probability	distribuRon	=	a	table	of	probability	values.	

P(Sex=female)	is	an	uncondiRonal	or	prior	probability.	
	
Note:	will	abbreviate	as	P(female)	when	it	is	unambiguous.	

and		

Joint	DistribuRons	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

other	 0.43	 .34	

P(kim	∧	male)	=	0.01	

If	these	are	all	the	random	variables	in	the	“world”,	then	this	table	gives	the	full	joint	
probability	distribuRon.		All	entries	sum	to	1.	

A	joint	distribuRon	over	a	set	of	random	variables	X1,	X2,…	
Xn	specifies	a	probability	for	each	possible	outcome	(i.e.,	
assignment).	

P(kim,	male)	=	0.01	

ProbabilisRc	Models	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

other	 0.43	 .34	

P(kim	∧	male)	=	0.01	

A	probabilisRc	model	is	a	joint	distribuRon	over	a	set		
of	random	variables.	

A	joint	distribuRon	over	a	set	of	random	variables	X1,	X2,…	
Xn	specifies	a	probability	for	each	possible	outcome	(i.e.,	
assignment).	

P(kim,	male)	=	0.01	

Events	
An	event	E	is	a	set	of	outcomes.		

From	a	joint	distribuRon,	can	calculate	the	probability	
of	any	event.		
	
This	process	of	summing	over	entries	in	the	joint	distribuRon	
is	called	inference	by	enumeraRon.	
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Events	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

•  From	a	joint	probability	distribuRon,	can	
calculate	the	probability	of	any	event	
– P(kate)?	P(male)?	
– P(michael	∧	female)?	
– P(kate	∨		kim)?	

Events	
•  From	a	joint	probability	distribuRon,	can	
calculate	the	probability	of	any	event	
– P(kate)?	P(male)?	
– P(michael	∧	female)?	
– P(kate	∨		kim)?	 Name	 Sex	 P(N,	S)	

kate	 female	 0.04	

kate	 male	 0.0	

kim	 female	 0.02	

kim	 male	 0.01	

michael	 female	 0.01	

michael	 male	 0.1	

other	 female	 0.43	

other		 male	 0.39	

Atomic	Events	

•  An	atomic	event	is	a	complete	specificaRon	of	
the	state	of	the	world	
– An	assignment	of	values	to	all	random	variables	

•  Joint	probability	distribuRon	assigns	
probabiliRes	to	all	possible	atomic	events.	

Marginal	DistribuRons	
•  Marginal	distribuRons	are	subtables	that	eliminate	
variables.	

•  MarginalizaRon	is	the	process	of	combining	
collapsed	rows/columns	by	summing	them.	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

kate	 0.04	

kim	 0.03	

michael	 0.11	

tom	 0.05	

Other	 0.77	

female	 male	

0.5	 0.5	

Marginal	DistribuRons	
Name	 Sex	 P(N,	S)	

kate	 female	 0.04	

kate	 male	 0.0	

kim	 female	 0.02	

kim	 male	 0.01	

michael	 female	 0.01	

michael	 male	 0.1	

other	 female	 0.43	

other		 male	 0.39	

S	 P(S)	

female	 0.5	

male	 0.5	

N	 P(N)	

kate	 ?	

kim	 ?	

michael	 ?	

other	 ?	

P(X1	=	x1)	=	Σ	x2	P(X1	=	x1,	X2	=	x2)	

CondiRonal	(Posterior)	ProbabiliRes	
A	simple	relaRonship	between	joint	and	condiRonal	
probabiliRes	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

P(female|michael)		
	

	=	(female,	michael)	/	P(michael)	
	

	=	0.01	/	0.11	
	

	=	0.09	
	
“given	that	michael	is	all	I	know,	what	is	the	
probability	that	you’re	female”		
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CondiRonal	(Posterior)	ProbabiliRes	

ProbabiliRes	change	with	new	evidence:	

P(female|michael)	=	0.09	
	
P(female|michael,	bass-register	voice)	=	0.001	

CondiRonal	DistribuRons	
CondiRonal	distribuRons	are	probability	distribuRons	
over	some	variables	given	fixed	values	of	others.	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

P(Name|Sex)	

S=f	

kate	 0.08	

kim	 0.04	

michael	 0.02	

tom	 0.0	

Other	 0.86	

S=m	

kate	 0.0	

kim	 0.02	

michael	 0.2	

tom	 0.1	

Other	 .68	

CondiRonal	DistribuRons:	
NormalizaRon	

CondiRonal	distribuRons	are	probability	distribuRons	
over	some	variables	given	fixed	values	of	others.	

female	 male	

kate	 0.04	 0.0	

kim	 0.02	 0.01	

michael	 0.01	 0.1	

tom	 0.0	 0.05	

Other	 0.43	 .34	

S=f	

kate	 0.08	

kim	 0.04	

michael	 0.02	

tom	 0.0	

Other	 0.86	

S=f	

kate	 0.04	

kim	 0.02	

michael	 0.01	

tom	 0.0	

Other	 0.43	

1.	Add	the	entries.	
2.	Divide	by	the	sum.	

CondiRonal	to	Joint	DistribuRons	
Can	also	compute	joint	distribuRons	from	condiRonal	
distribuRons.	

P(a,b) = P(a|b)P(b)



Or



P(a,b) = P(b|a)P(a)


Name	 Sex	 P(N,	G)	

kate	 female	 0.04	

kate	 male	 0.0	

kim	 female	 0.02	

kim	 male	 0.01	

michael	 female	 0.01	

michael	 male	 0.1	

other	 female	 0.43	

other		 male	 0.39	

Name	 Sex	 P(N	|	S)	

kim	 female	 0.04	

kim	 male	 0.02	

kate	 female	 0.08	

kate	 male	 0.0	

michael	 female	 .02	

michael	 male	 .2	

other	 female	 .86	

other	 male	 .78	

P(n	,	s)	=	P(n	|	s)		P(s)	

Sex	 P(S)	

female	 0.5	

male	 0.5	

CondiRonal	to	Joint	DistribuRons	 Useful	Axioms,	DefiniRons,	and	Rules	

•  All	probabiliRes	are	between	0	and	1.	
0	≤	P(a)	≤	1	

	and	the	total	probability	of	the	set	of	possible	
worlds	is	1	

•  The	probability	associated	with	a	proposiRon	is	
the	sum	of	the	probabiliRes	of	the	worlds	in	
which	it	holds.	
– Necessarily	true	proposiRons	have	value	1.	
– Necessarily	false	proposiRons	have	value	0.	

•  P(a	∨	b)	=	P(a)	+	P(b)	–	P(a	∧	b)	
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DefiniRon	of	condiRonal	probability:	

P(a,b) = P(a|b)P(b) = P(b|a)P(a)


Product	rule:	

Chain	rule:	derived	by	successive	applicaRons	of	the	
product	rule	

P(x1,x2,x3)=P(x1)P(x2|x1)P(x3|x1,x2)	
P(x1,x2,..xn)=P(xn|x1…xn-1)P(xn-1|x1…xn-2)…P(x2|x1)P(x1)	

Useful	Axioms,	DefiniRons,	and	Rules	

Bayes	rule:	 P(a|b) = P(b|a)P(a) / P(b)


DiagnosRc	from	Causal	Probability	

P(Cause|Effect)	=	P(Effect|Cause)P(Cause)	
		 	 	 	 	 	 	 	P(Effect)	

[Adapted	from	CS	188]	

Inference	in	Ghostbusters	
•  A	ghost	is	in	the	grid	somewhere	
•  Sensor	readings	tell	how	close	a	square	is	to	the	
ghost	

•  Sensors	noisy,	but	we	know	P(Color|Distance)	

Ghostbusters	

•  Say	we	have	two	distribuRons	
–  P(G):	say	it’s	uniform	
–  Sensor	reading	model	P(R|G)	

•  Say	we	get	a	reading	at	(1,1)	
•  Can	calculate	the	posterior	
distribuRon	P(G|r)	over	all	
locaRons	given	the	reading	at	
(1,1)	

0.11	 0.11	 0.11	

0.11	 0.11	 0.11	

0.11	 0.11	 0.11	

0.11	 0.11	 0.11	

0.11	 0.11	 0.11	

0.11	 0.11	 0.11	

•  Sensor	readings	
– On	the	ghost	(1	locaRon):	red	
– 1	or	2	away	(5	locaRons):	orange	
– 3	or	4	away	(3	locaRons):	yellow	

•  Sensors	noisy	

[Adapted	from	CS	188	Berkeley]	

P(red	|	0)	 P(orange	|	0)	 P(yellow	|	0)	

0.7	 0.2	 0.1	

P(red	|	1	or	2)	 P(orange	|	1	or	2)	 P(yellow	|	1	or	2)	

0.15	 0.7	 0.15	

P(red	|	3	or	4)	 P(orange	|	3	or	4)	 P(yellow	|	3	or	4)	

0.1	 0.2	 0.7	

P(g|yellow)	 		
P(0	away|yellow)		
P(1-2	away|yellow)		
P(3-4	away|yellow)		
P(yellow)	
		 	 	 		


