Q-Learning Wrap-Up

Discussion: Bidirectional Search guaranteed to meet in the middle

Andrea Danyluk
March 6, 2017

Announcements

- Programming Assignment 2 code reviews today
- Turn in reading responses
- Midterm this week
- Will find it in your CS mailbox by tomorrow at 10am (or in mine, if you don't have a mailbox)
- Take it out when ready to do it; Complete by 4:30pm Friday
- Mark start date/time and end date/time; Turn in immediately after end
- Turn in "cheat sheet" with exam
- RL assignment now posted
- Confirm partners with me by Monday 9am

Today

- Q-Learning Wrap-Up
- Discussion
- States?
- Actions?
- Transition Model?
- Rewards?

Demo

Q-Learning in the Real World

- In many cases, too many states
- Might not be able to hold the Q -values in memory
- Can't visit all during training
- Or even if we can visit them, can't do so enough
- Want to make use of the power of generalization

Feature-Based Representations

- Describe a state using a vector of features (properties)
- Features are functions from states to real numbers (sometimes just 0/1)
- Features capture important properties of the state
- Pacman examples:
- Distance to closest ghost [closest food, etc]
- Number of ghosts [food, etc]
- Is Pacman in a tunnel?
- Is Pacman trapped?
- Can describe a Q state (i.e. $\mathrm{Q}(\mathrm{s}, \mathrm{a})$) with features, too

Values (utilities) as approximated by evaluation functions

- $\mathrm{V}(\mathrm{s})=\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s})+\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s})+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{s})$
- Recall your minimax evaluation functions!
- $\mathrm{Q}(\mathrm{s}, \mathrm{a})=\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})+\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{s}, \mathrm{a})$
- Learn values for the weights $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$, such that the evaluation function approximates the true value (utility)

- Say we have three features:
- PowerPellet <= 1 ($1=T, 0=F$)
- ScaryGhost <= 1 ($1=\mathrm{T}, 0=\mathrm{F}$)
- Food <= 3 ($1=\mathrm{T}, 0=\mathrm{F}$)
- Say $\mathrm{w}_{1}=0.8, \mathrm{w}_{2}=0.5, \mathrm{w}_{3}=0.4$
- Then
$-\mathrm{Q}\left(\mathrm{s}_{\text {cur }} \mathrm{E}\right)=.8(0)+.5(0)+.4(1)=.4$

- Say we have three features:
- PowerPellet <= 1 ($1=\mathrm{T}, 0=\mathrm{F}$)
- ScaryGhost <= 1 ($1=\mathrm{T}, 0=\mathrm{F}$)
- Food <= 3 ($1=\mathrm{T}, 0=\mathrm{F}$)
- Say $w_{1}=0.8, w_{2}=0.5, w_{3}=0.4$
- Then
$-\mathrm{Q}\left(\mathrm{s}_{\text {curr }}, \mathrm{S}\right)=.8(1)+.5(1)+.4(1)=1.7$

Learning weights for linear Q-functions

Before:

sample $=\mathrm{R}\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}\right)+\gamma \max _{\mathrm{a}^{\prime}} \mathrm{Q}\left(\mathrm{s}^{\prime}, \mathrm{a}^{\prime}\right)$
$Q(s, a)=(1-\alpha) Q(s, a)+\alpha($ sample $)$
$Q(s, a)=Q(s, a)+\alpha($ sample $-Q(s, a))$
$\mathrm{w}_{1}=\mathrm{w}_{1}+\alpha($ sample - current $)\left(\mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})\right)$
$\mathrm{w}_{2}=\mathrm{w}_{2}+\alpha($ sample - current $)\left(\mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})\right)$
$w_{1}=0.8+0.1(-10+\gamma(0)-1.7) 1=.8+0.1(-11.7)=-.37$
$w_{2}=0.5+0.1(-10+\gamma(0)-1.7) 1=.5+0.1(-11.7)=-.67$
$w_{3}=0.4+0.1(-10+\gamma(0)-1.7) 1=.4+0.1(-11.7)=-.77$

Why?
 Ordinary Least Squares

- Aim to minimize squared error: ½ (current - obs total reward) ${ }^{2}$
- The rate of change of the error wrt each w parameter is the partial derivative:
$\left(\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})+\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})\right.$ - obs total reward) $\mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})$ $\left(\mathrm{w}_{1} \mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})+\mathrm{w}_{2} \mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})-\right.$ obs total reward $) \mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})$

Why?
 Ordinary Least Squares

- The squared error defines a surface in ($\mathrm{n}+1$)dim space, where n is the number of parameters.
- To reach the minimum in an online fashion, we "step" along the surface in the direction opposite the gradient
$\mathrm{w}_{1}=\mathrm{w}_{1}+\alpha$ (obs total reward - current) $\mathrm{f}_{1}(\mathrm{~s}, \mathrm{a})$
$\mathrm{w}_{2}=\mathrm{w}_{2}+\alpha$ (obs total reward - current $\mathrm{f}_{2}(\mathrm{~s}, \mathrm{a})$

Pros and Cons of Function Approximation

Pros

- Makes it practical to handle very large state spaces
- Allows the learner to generalize from states it has visited to states it has not yet seen
Cons
- There might not be a good function in the chosen hypothesis space (defined by the choice of features)
- Tradeoff between the size of the hypothesis space and the learning time
- As always, need to take care with learning rate parameter

Demo: RL Pacman

