Q-Learning Wrap-Up
Discussion: Bidirectional Search
guaranteed to meet in the middle

3/13/17

Announcements

* Programming Assignment 2 code reviews today
¢ Turn in reading responses
* Midterm this week
— Will find it in your CS mailbox by tomorrow at 10am
(or in mine, if you don’t have a mailbox)

— Take it out when ready to do it; Complete by 4:30pm
Friday

— Mark start date/time and end date/time; Turn in
immediately after end

— Turn in “cheat sheet” with exam
* RLassighnment now posted
— Confirm partners with me by Monday 9am

Pacman
* States?
* Actions?
* Transition Model?
* Rewards?
Demo

Today
* Q-Learning Wrap-Up
* Discussion

Pacman
* States?
¢ Actions?

* Transition Model?
¢ Rewards?

Ability to
generalize?

Q-Learning in the Real World

* |n many cases, too many states
— Might not be able to hold the Q-values in memory
— Can't visit all during training
 Or even if we can visit them, can’t do so enough
* Want to make use of the power of
generalization




Feature-Based Representations

* Describe a state using a vector of features
(properties)
— Features are functions from states to real numbers
(sometimes just 0/1)
— Features capture important properties of the state
— Pacman examples:
« Distance to closest ghost [closest food, etc]
* Number of ghosts [food, etc]
* Is Pacman in a tunnel?
* Is Pacman trapped?

* Can describe a Q state (i.e. Q(s, a)) with features,

too

Values (utilities) as approximated by
evaluation functions
o V(s) = w,fi(s) + wyf,(s) + ... + w,f.(s)
— Recall your minimax evaluation functions!

* Q(s, a) = w,f(s,a) + w,f,(s,a) + ... + w,f (s,a)

* Learn values for the weights wy, w,, ..., w
such that the evaluation function
approximates the true value (utility)

n’

* Say we have three features:

— PowerPellet <=1 (1=T,0=F)

— ScaryGhost <=1 (1=T,0=F)

— Food <= 3 (1=T,0=F)
* Sayw,=0.8,w,=0.5w;=0.4
* Then

—Q(s,,, E) =.8(0) +.5(0) + .4(1) = .4

* Say we have three features:
— PowerPellet <=1 (1=T,0=F)
— ScaryGhost <=1 (1=T,0=F)
— Food <= 3 (1=T,0=F)
* Sayw,; =0.8, w,=0.5, w;=0.4
* Then
—Q(se, S) =-8(1) +.5(1) +.4(1) = 1.7

Learning weights for linear Q-functions

Before:

sample = R(s,a,s’) +y max, Q(s’, a’)
Q(s, a) = (1-a) Q(s, a) + a(sample)
Q(s, a) =Q(s, a) + a(sample — Q(s, a))

w, = w, + a(sample- current)(f,(s,a))
W, =W, + a(sample- current)(f,(s,a))

w, = 0.8 +0.1(-10+ y(0) - 1.7)1 = .8 + 0.1(-11.7) = -.37
W, = 0.5 +0.1(-10+ y(0) = 1.7)1 = .5 + 0.1(-11.7) = -.67
W, = 0.4 +0.1(-10+ y(0) - 1.7)1 = .4 + 0.1(-11.7) =-.77

Learning weights for linear Q-functions

Before:

sample = R(s,a,s’) +y max, Q(s’, a’)
Q(s, a) = (1-a) Q(s, a) + a(sample)
Q(s, a) =Q(s, a) + a(sample — Q(s, a))

w, = w, + a(sample- current)(f,(s,a))
W, =W, + a(sample— current)(f,(s,a))

w, = 0.8 +0.1(-10+ y(0) = 1.7)1 = .8 + 0.1(-11.7) = -.37
w, = 0.5 +0.1(-10+ y(0) - 1.7)1 = .5 + 0.1(-11.7) = -.67
W, = 0.4+ 0.1(-10+ y(0) = 1.7)1 = .4 + 0.1(-11.7) = -.77




Why?
Ordinary Least Squares

* Aim to minimize squared error:
% (current — obs total reward)?

* The rate of change of the error wrt each w
parameter is the partial derivative:

(w,f,(s,a) + w,f,(s,a) — obs total reward)f,(s,a)
(w,f,(s,a) + w,f,(s,a) — obs total reward)f,(s,a)

3/13/17

Why?
Ordinary Least Squares
* The squared error defines a surface in (n+1)-

dim space, where n is the number of
parameters.

* To reach the minimum in an online fashion,
we “step” along the surface in the direction
opposite the gradient

w, =w, + a(obs total reward — current)f,(s,a)
W, =W, + a(obs total reward — current)f,(s,a)

Pros and Cons of Function
Approximation

Pros
* Makes it practical to handle very large state spaces

* Allows the learner to generalize from states it has
visited to states it has not yet seen

Cons

* There might not be a good function in the chosen
hypothesis space (defined by the choice of features)

* Tradeoff between the size of the hypothesis space and
the learning time

* As always, need to take care with learning rate
parameter

Demo: RL Pacman




