Reinforcement Learning:
 Temporal Difference

Andrea Danyluk
March 1, 2017

Today's Lecture

- Reinforcement Learning
- But a note on Policy Iteration first

Passive RL

- Given:
- A policy $\pi(s)$ (can begin with a random policy)
- No knowledge of $P\left(s^{\prime} \mid s, a\right)$
- No knowledge of rewards R(s, a, s')
- Goal: learn state values (or state,action values)
- But can learn policy with exploring starts and generalized policy iteration
- Passive in the sense that there's no choice about what actions to take
- Need to execute the policy to learn from experience
- Not offline planning. Actually take actions to learn.

Today's Lecture
- Reinforcement Learning
- But a note on Policy Iteration first

Announcements

- Programming Assignment 2 due tomorrow at 11 pm
- If working with a partner, send me email with your names and indicate who is turning it in
- On Friday will make code review sign-up sheet available
- Assignment for Monday
- Read Holte et al.'s AAAI 2016 paper on bi-directional search
- Turn in brief reading response (no more than one page, 12 pt font, 1.5 spacing) at start of class
- Sample midterm available online
- RL assignment will be available Friday morning
- Will ask you to confirm partners with me by Monday

Example: Model-Based Learning

Episodes:

$(1,1)-1,(1,2)-1,(1,2)-1,(1,3)-1,(2,3)-1,(3,3)-1,(3,2)-1,(3,3)-1,(4,3)+100$
$(1,1)-1,(1,2)-1,(1,3)-1,(2,3)-1,(3,3)-1,(3,2)-1,(4,2)-100$
$\mathrm{P}((1,2) \mid(1,1)$, North $)=1$
$P((4,3) \mid(3,3)$, Right $)=1 / 3$
$P((3,2) \mid(3,3)$, Right $)=2 / 3$

Temporal Difference Learning

- Learn from every experience: don't have to wait for an episode to end
- Update $V(s)$ each time we experience ($s, a, s^{\prime}, r^{\prime}$)
- Likely s' will contribute updates more often
- Policy is still fixed
- Moves a state's value toward the value of whatever successor occurs: running average

Model-Based Learning

- Count outcomes for each s , a
- Normalize to give estimate of $P\left(s^{\prime} \mid s, a\right)$
- Discover R(s) [or R(s, a, s')] when exploring
- Solve the MDP with the learned model as if it were correct
- Use Policy Iteration, for example

Model-Based vs Model-Free Learning

- Want to compute an expectation weighted by $P(x)$: $E[f(x)]=\Sigma_{\mathrm{x}} \mathrm{P}(\mathrm{x}) \mathrm{f}(\mathrm{x})$, i.e., $V(s)=E\left[\Sigma \gamma^{t} R\left(S_{t+1}\right)\right]$
$V^{\pi}(s)=\Sigma_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) \cdot\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma \cdot V^{\pi}\left(s^{\prime}\right)\right]$
- Model-Based: estimate $\mathrm{P}(\mathrm{x})$ from samples, and then compute expectation
$P(x)=n u m(x) / N$, i.e.
the number of times s^{\prime} is reached from s on action a, divided by the number of times a is applied in s
- Model-Free: estimate expectation directly from samples $E[f(x)]=1 / N \Sigma_{i} f\left(x_{i}\right)$, i.e.,
$V^{\pi}(s)=1 / N \Sigma_{s^{\prime}}$ num $\left(s, a, s^{\prime}\right) \cdot\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma \cdot V^{\pi}\left(s^{\prime}\right)\right]$, where N is the number of times s is reached, and a is $\pi(s)$
- That is, the samples appear with the right frequencies.

Temporal Difference Learning

$\mathrm{V} \pi(\mathrm{s})=\mathrm{V}^{\pi}(\mathrm{s})+\alpha($ sample $-\mathrm{V} \pi(\mathrm{s}))$
Note: V on right hand side is old value. V on left hand side is new. (Like an assignment statement.)

- Get sample of $\mathrm{V}(\mathrm{s})$:
sample $=R\left(s, \pi(s), s^{\prime}\right)+\gamma \cdot V \pi\left(s^{\prime}\right)$
- Update V(s):
$V^{\pi}(s)=(1-\alpha) V^{\pi}(s)+\alpha($ sample $)$

Exponential Moving Average

- $\mathrm{V}^{\pi}(\mathrm{s})=(1-\alpha) \mathrm{V}^{\pi}(\mathrm{s})+\alpha($ sample $)$
- Let
$V_{k}{ }^{\pi}(s)$ be the kth estimate of $V^{\pi}(s)$
$V_{k}{ }^{\pi}(s)$ be the $k t h$ sample
- Then
$V_{k}{ }^{\pi}(s)=\alpha\left(V_{k}{ }^{\pi}(s)\right)+(1-\alpha) V_{k-1}{ }^{\pi}(s)$
$=\alpha\left(V_{k}{ }^{\pi}(s)\right)+(1-\alpha)\left[\alpha\left(V_{k-1}{ }^{\pi}(s)\right)+(1-\alpha) V_{k-2}{ }^{\pi}(s)\right]$
- Since $\alpha<1$, older estimates get less and less weight as time goes on
- α is called the learning rate

