Reinforcement Learning: Temporal Difference

Andrea Danyluk March 1, 2017

Announcements

- Programming Assignment 2 due tomorrow at 11pm
 If working with a partner, send me email with your names and indicate who is turning it in
- On Friday will make code review sign-up sheet available Assignment for Monday
- Read Holte et al.'s AAAI 2016 paper on bi-directional search
- Turn in brief reading response (no more than one page, 12pt font, 1.5 spacing) at start of class
- Sample midterm available online
- RL assignment will be available Friday morning
 Will ask you to confirm partners with me by Monday

Today's Lecture

- Reinforcement Learning
- But a note on Policy Iteration first

Reinforcement Learning

- Assume an MDP
 - S: a set of states
 - A: a set of actions
 - P(s' | s, a): the probability of ending up in state s', given that the agent is in state s and takes action a
 R(s): or R(s, a, s'): a reward function
 - Want to find a policy π
- But this time we don't know P or R
 - Need to try things out in order to learn

Passive RL

- Given:
 - A policy $\pi(s)$ (can begin with a random policy) - No knowledge of P(s' | s, a)
 - No knowledge of rewards R(s, a, s')
- Goal: learn state values (or state, action values)
 But can learn policy with exploring starts and
- generalized policy iteration • Passive in the sense that there's no choice about
- what actions to take - Need to execute the policy to learn from experience
 - Not offline planning. Actually take actions to learn.

Model-Based Learning

- Count outcomes for each s, a
- Normalize to give estimate of P(s' | s, a)
- Discover R(s) [or R(s, a, s')] when exploring
- Solve the MDP with the learned model as if it were correct
 - Use Policy Iteration, for example

- $V(s) = E [\Sigma \gamma^{i} R(S_{t+1})]$ $V^{\pi}(s) = \Sigma_{s} P(s' | s, \pi(s)) \cdot [R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s')]$ Model-Based: estimate P(x) from samples, and then
- compute expectation P(x) = num(x)/N, i.e., the number of times s' is reached from s on action a, divided by the number of times a is applied in s
- Model-Free: estimate expectation directly from samples Eff(x)] = 1/N Σ_{s} f(x), i.e., $V^{\pi}(s) = 1/N \sum_{s}$ num(s,a,s') [R(s, $\pi(s),s') + \gamma \cdot V^{\pi}(s')]$, where N is the number of times s is reached, and a is $\pi(s)$
- That is, the samples appear with the right frequencies.

Temporal Difference Learning

- Learn from every experience: don't have to wait for an episode to end
 - Update V(s) each time we experience (s, a, s', r')
 - Likely s' will contribute updates more often
- Policy is still fixed
- Moves a state's value toward the value of whatever successor occurs: running average

Temporal Difference Learning

$$\begin{split} & V^{\pi}(s) = V^{\pi}(s) + \alpha(sample - V^{\pi}(s)) \\ & \text{Note: V on right hand side is old value. V on left hand side is new. (Like an assignment statement.) \end{split}$$

- Get sample of V(s): sample = R(s, π(s),s') + γ·V^π(s')
- Update V(s): $V^{\pi}(s) = (1-\alpha) V^{\pi}(s) + \alpha(sample)$

Exponential Moving Average

- $V^{\pi}(s) = (1-\alpha) V^{\pi}(s) + \alpha(sample)$
- Let
 - $V_k^{\ \pi}\!(s)$ be the kth estimate of $V^{\pi}\!(s)$ $V_k^{\pi}(s)$ be the kth sample
- Then

 - $$\begin{split} & \overset{\operatorname{horm}}{\bigvee_{k}} \pi(s) = \alpha(\mathsf{V}_{k}\pi(s)) + (1{\text{-}}\alpha) \, \mathsf{V}_{k{\text{-}}1}\pi(s) \\ & = \alpha(\mathsf{V}_{k}\pi(s)) + (1{\text{-}}\alpha) \, [\alpha(\mathsf{V}_{k{\text{-}}1}\pi(s)) + (1{\text{-}}\alpha) \, \mathsf{V}_{k{\text{-}}2}\pi(s)] \\ & = \ldots \end{split}$$
- Since $\alpha < 1$, older estimates get less and less weight as time goes on
- α is called the *learning rate*