
2/28/17	

1	

Value	and	Policy	Itera6on	

Andrea	Danyluk	
February	27,	2017	

Announcements	

•  Programming	Assignment	2	in	progress	
•  On	Wednesday	will	announce	an	ar6cle	to	
read	for	Monday	

Today’s	Lecture	

•  Quick	review	of	Value	Itera6on	
•  Policy	Itera6on	

Stochas6c	Gridworld	

N	

Policies,	not	Plans	 Value	Itera6on	

•  Will	calculate	successive	es6mates	Vk*	of	V*	
•  Start	with	V0*(s)	=	0	for	all	s	
•  Given	Vi*,	calculate	the	values	for	all	states	for	
depth	i+1	
	Vi+1*(s)	=	max	a	Σ	P(s’	|s,a)·[R(s’)	+	γ·Vi*(s’)]		
•  Throw	out	old	vector	Vi*	
•  Repeat	un6l	convergence	
•  Called	value	update	or	Bellman	update	

[Adapted	from	CS	188	Berkeley]	



2/28/17	

2	

Value	Itera6on	Demos	
•  All	rewards	are	1	
•  The	value	of	a	state	is	either	the	value	itself	or	
the	value	+	the	penalty	if	you	got	there	by	
running	into	a	wall	(so	in	this	case	we	aim	to	
minimize	expected	“reward”)	

•  PJOG	=	how	badly	you	go	off	course	
–  0	means	your	ac6on	does	what	you	intended	
–  0.3	means	70%	of	the	6me	your	ac6on	does	what’s	
intended;	splits	the	30%	evenly	among	the	remaining	
op6ons	

•  Discount	rate	(gamma)	is	always	1	

Value	Itera6on	Demos	
•  All	base	rewards	are	1	
•  The	reward	at	a	state	is	either	the	reward	itself	or	
the	reward	+	the	penalty	if	you	got	there	by	
running	into	a	wall	(so	in	this	case	we	aim	to	
minimize	expected	value)	

•  PJOG	=	how	badly	you	go	off	course	
–  0	means	your	ac6on	does	what	you	intended	
–  0.3	means	70%	of	the	6me	your	ac6on	does	what’s	
intended;	splits	the	30%	evenly	among	the	remaining	
op6ons	

•  Discount	rate	(gamma)	is	always	1	

Things	to	no6ce	in	the	demos	

•  Value	approxima6ons	get	refined	toward	
op6mal	values	

•  Informa6on	propagates	outward	from	the	
terminal	states	un6l	all	states	have	correct	
informa6on	

•  The	policy	may	converge	long	before	the	
values	do	

	

The	Bellman	Equa6on:	
a	closer	look	

V*(s)	=	max	a	Σ	P(s’	|s,a)·[R(s’)	+	γ·V(s’)]	
	
Reconciling	the	formula6ons	in	the	two	texts:	
	
Sulon	and	Barto:	
V*(s)	=	max	a	Σ	P(s’	|s,a)·[R(s,a,s’)	+	γ·V(s’)]	

	We’ve	been	taking	the	reward	of	the	transi6on	to	be	the	reward	of	the	
state	we	would	enter	upon	transi6on	

	
Russell	and	Norvig:	
V*(s)	=	R(s)	+	max	a	Σ	P(s’	|s,a)·[γ·V(s’)]	

	A	common	formula6on:	take	the	reward	of	the	transi6on	to	be	the	one	of	
the	state	you’re	in	

	
	
	
		

Values	(U6li6es)	for	Fixed	Policies	

•  How	do	we	compute	the	u6lity	of	state	under	
a	fixed	(not	necessarily	op6mal)	policy?	
	Vπ(s)	=	Σ	P(s’	|s,π(s))·[R(s,	π(s),s’)	+	γ·Vπ(s’)],	
	where	the	sum	is	over	all	s’	

	
This	is	the	expected	total	discounted	reward	
star6ng	in	s	and	following	the	policy	

Policy	Evalua6on	

•  Can	calculate	the	V’s	for	a	fixed	policy	just	as	we	
calculated	V*	earlier	

•  Set	values	to	0	ini6ally	
•  Perform	recursive	update	
	Vi+1

π(s)	=	Σ	P(s’	|s,π(s))·[R(s,	π(s),s’)	+	γ·Vi
π(s’)],	

	where	the	sum	is	over	all	s’	
Note:	No	“max”	here.		So	this	is	just	a	set	of	linear	
equa>ons	that	can	be	solved	without	recursive	
update.	

	
	



2/28/17	

3	

Policy	Itera6on	

Repeat	
•  Step	1:	Policy	evalua6on	
– Calculate	u6li6es	for	fixed	(probably	subop6mal)	
policy	un6l	convergence	(in	prac6ce,	a	reasonable	
approxima6on	is	good	enough)	

•  Step	2:	Policy	improvement	
– Update	policy	using	one-step	lookahead	

Un6l	policy	converges	

Reinforcement	Learning	

•  Assume	an	MDP	
– S:	a	set	of	states	
– A:	a	set	of	ac6ons	
– P(s’	|	s,	a):	the	probability	of	ending	up	in	state	s’,	
given	that	the	agent	is	in	state	s	and	takes	ac6on	a	

– R(s):	or	R(s,	a,	s’):	a	reward	func6on	
– Want	to	find	a	policy	π	

•  But	this	6me	we	don’t	know	P	or	R	
– Need	to	try	things	out	in	order	to	learn	

Reinforcement	Learning	

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

• 		Will	assume	agent	can	observe	the	state	it’s	in.	
• 		Agent	receives	feedback	in	the	form	of	rewards.	
• 		Learns	to	act	so	as	to	maximize	expected	return.	

Passive	RL	
•  Given:	
– A	policy	π(s)	
– No	knowledge	of	P(s’|s,	a)	
– No	knowledge	of	rewards	R(s,	a,	s’)	

•  Goal:	learn	state	values	(not	policy	yet…)	
–  Recall	policy	evalua6on!	

•  Passive	in	the	sense	that	there’s	no	choice	about	
what	ac6ons	to	take	
– Need	to	execute	the	policy	to	learn	from	experience	
– Not	offline	planning.		Actually	take	ac>ons	to	learn.	

Example:	Direct	Es6ma6on	

y	

+100	

-100	

1	

2	

3	

1	 2	 3	 4	

x	

γ	=	1,	R	=	-1	

Episodes:	
(1,	1)		-1	,	(1,	2)	-1	,	(1,	2)	-1	,	(1,	3)	-1,	(2,	3)	-1,	(3,	3)	-1,	(3,	2)	-1,	(3,	3)	-1,	(4,	3)	+100	
	
(1,	1)	-1,	(1,	2)	-1,	(1,	3)	-1,	(2,	3)	-1,	(3,	3)	-1,	(3,	2)	-1,	(4,	2)	-100	

V(s)	=	E	[Σ	γt	R(St+1)],	
																		t	from	0	to	∞	
	 	 	 	s	=	S0	

V(2,	3)	=	(96	+	-103)	/	2	=	-3.5	
	
V(3,	3)	=	(99	+	97	+	-102)	/	3	=	31.3			


