Value and Policy lteration

Andrea Danyluk
February 27, 2017

2/28/17

Announcements

* Programming Assignment 2 in progress

* On Wednesday will announce an article to
read for Monday

Today’s Lecture

* Quick review of Value Iteration
* Policy Iteration

Stochastic Gridworld

£ o S

Policies, not Plans

Value Iteration

* Will calculate successive estimates V, * of V*

* Start with V *(s) =0 for all s

* Given V/*, calculate the values for all states for
depth i+1
Vi *(s) = max , ZP(s’ |s,a)-[R(s") + v-V;*(s')]

* Throw out old vector V;*

* Repeat until convergence

* Called value update or Bellman update

[Adapted from CS 188 Berkeley]




Value Iteration Demos

All rewards are 1

* The value of a state is either the value itself or
the value + the penalty if you got there by
running into a wall (so in this case we aim to
minimize expected “reward”)

* PJOG = how badly you go off course

— 0 means your action does what you intended

— 0.3 means 70% of the time your action does what'’s
intended; splits the 30% evenly among the remaining
options

* Discount rate (gamma) is always 1

2/28/17

Value Iteration Demos

* All base rewards are 1

* The reward at a state is either the reward itself or
the reward + the penalty if you got there by
running into a wall (so in this case we aim to
minimize expected value)

* PJOG = how badly you go off course
— 0 means your action does what you intended

— 0.3 means 70% of the time your action does what'’s
intended; splits the 30% evenly among the remaining
options

* Discount rate (gamma) is always 1

Things to notice in the demos

* Value approximations get refined toward
optimal values

* Information propagates outward from the
terminal states until all states have correct
information

* The policy may converge long before the
values do

The Bellman Equation:
a closer look

V*(s) = max , 2 P(s’ |s,a)-[R(s') + y-V(s')]
Reconciling the formulations in the two texts:

Sutton and Barto:

V*(s) = max , 2 P(s’ |s,a)[R(s,a,s") +y-V(s')]
We’ve been taking the reward of the transition to be the reward of the
state we would enter upon transition

Russell and Norvig:

V*(s) = R(s) + max , 2 P(s’ |s,a)-[y-V(s')]
A common formulation: take the reward of the transition to be the one of
the state you're in

Values (Utilities) for Fixed Policies

* How do we compute the utility of state under
a fixed (not necessarily optimal) policy?

V(s) =2 P(s” |s,m(s))[R(s, mt(s),s") + y-V(s')],
where the sum is over all s’

This is the expected total discounted reward
starting in s and following the policy

Policy Evaluation

* Can calculate the V’s for a fixed policy just as we
calculated V* earlier

* Set values to 0 initially

* Perform recursive update
Vi, (s) = 2 P(s” |s,m(s)) [R(s, m(s),s") + y-V(s)],
where the sum is over all s’

Note: No “max” here. So this is just a set of linear
equations that can be solved without recursive
update.




2/28/17

Policy Iteration Reinforcement Learning

Repeat * Assume an MDP
* Step 1: Policy evaluation —5:aset of states
— Calculate utilities for fixed (probably suboptimal) —A ? set of.actlons . . . ,
policy until convergence (in practice, a reasonable - P,(S |'s, a): the proba'bl!lty of ending up in stat.e S
approximation is good enough) given that the agent is in state s and takes action a
o — R(s): or R(s, a, s’): a reward function
* Step 2: Policy improvement

— Want to find a policy t
* But this time we don’t know P or R
— Need to try things out in order to learn

— Update policy using one-step lookahead
Until policy converges

Reinforcement Learning

* Given:
—
—> — A policy ri(s)

sute | [roward action — No knowledge of P(s’[s, a)
bt " 2 — No knowledge of rewards R(s, a, s)

LT ] ¢ Goal: learn state values (not policy yet...)
PUR] Environment |~ — Recall policy evaluation!

* Passive in the sense that there’s no choice about
what actions to take

— Need to execute the policy to learn from experience
* Will assume agent can observe the state it’s in. — Not offline planning. Actually take actions to learn.
» Agent receives feedback in the form of rewards.
* Learns to act so as to maximize expected return.

Passive RL

Example: Direct Estimation
Episodes:

(1,1) -1,(1,2)-1,(1,2)-1,(1,3)-1,(2,3)-1,(3,3)-1,(3, 2) -1, (3, 3) -1, (4, 3) +100

(1,1)-1,(1,2)-1,(1,3)-1,(2,3)-1, (3, 3) -1, (3, 2) -1, (4, 2) -100
y

V(s) = E [ZV'R(S,,4)],
tfromO0to oo
s=S,

V(2,3)=(96 +-103) /2=-3.5

V(3,3)=(99+97 +-102) /3=313




