# Value and Policy Iteration

Andrea Danyluk February 27, 2017

### Announcements

- Programming Assignment 2 in progress
- On Wednesday will announce an article to read for Monday









## Value Iteration Demos

- All rewards are 1
- The value of a state is either the value itself or the value + the penalty if you got there by running into a wall (so in this case we aim to minimize expected "reward")
- PJOG = how badly you go off course
  - 0 means your action does what you intended
     0.3 means 70% of the time your action does what's intended; splits the 30% evenly among the remaining options
- Discount rate (gamma) is always 1

## Value Iteration Demos

- All base rewards are 1
- The reward at a state is either the reward itself or the reward + the penalty if you got there by running into a wall (so in this case we aim to minimize expected value)
- PJOG = how badly you go off course
  - 0 means your action does what you intended
     0.3 means 70% of the time your action does what's intended; splits the 30% evenly among the remaining options
- Discount rate (gamma) is always 1

## Things to notice in the demos

- Value approximations get refined toward optimal values
- Information propagates outward from the terminal states until all states have correct information
- The policy may converge long before the values do

### The Bellman Equation: a closer look

 $V^*(s) = \max_{a} \Sigma P(s' | s,a) \cdot [R(s') + \gamma \cdot V(s')]$ 

Reconciling the formulations in the two texts:

Sutton and Barto:

 $V^*(s) = max_a \Sigma P(s' \mid s,a) \cdot [R(s,a,s') + \gamma \cdot V(s')]$ We've been taking the reward of the transition to be the reward of the state we would enter upon transition

Russell and Norvig:

 $V^{\star}(s)$  = R(s) + max  $_a\Sigma$  P(s'  $[s,a]\cdot[V\cdot V(s')]$  A common formulation: take the reward of the transition to be the one of the state you're in

# Values (Utilities) for Fixed Policies

• How do we compute the utility of state under a fixed (not necessarily optimal) policy?  $V^{\pi}(s) = \Sigma P(s' \mid s, \pi(s)) \cdot [R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s')],$ where the sum is over all s'

This is the expected total discounted reward starting in s and following the policy

# **Policy Evaluation**

- Can calculate the V's for a fixed policy just as we calculated V\* earlier
- · Set values to 0 initially
- Perform recursive update  $V_{i+1}^{\pi}(s) = \Sigma P(s' | s, \pi(s)) \cdot [R(s, \pi(s), s') + \gamma \cdot V_i^{\pi}(s')],$ where the sum is over all s'
- Note: No "max" here. So this is just a set of linear equations that can be solved without recursive update.

## **Policy Iteration**

#### Repeat

- Step 1: Policy evaluation
  - Calculate utilities for fixed (probably suboptimal) policy until convergence (in practice, a reasonable approximation is good enough)
- Step 2: Policy improvement

   Update policy using one-step lookahead
- Until policy converges

#### **Reinforcement Learning**

- Assume an MDP
  - S: a set of states
  - A: a set of actions
  - P(s' | s, a): the probability of ending up in state s', given that the agent is in state s and takes action a
  - R(s): or R(s, a, s'): a reward function
  - Want to find a policy  $\pi$
- But this time we don't know P or R

   Need to try things out in order to learn

Reinforcement Learning

 Agent
 Agent
 action
 *r<sub>r</sub> r<sub>r</sub>* Environment

 Will assume agent can observe the state it's in.
 Agent receives feedback in the form of rewards.
 Learns to act so as to maximize expected return.



