Lecture 4

Homework \#4: 1.6.1 c, d, e, 1.6.2, 1.6.5, 1.7.2 c, 1.7.3
[For 1.7.2c, the book says to use the inductive definition of reversal. You might find this useful, but you might find other things more useful.]

Finishing up proof techniques:

The Diagonalization Principle

Example. Show that $[0,1)$ is uncountable.
Assume the contrary, i.e., that $[0,1)$ is countable. Then the elements can be itemized as follows:

$\mathrm{x}_{1}=0 . \mathrm{a}_{11}$	a_{12}	a_{13}	\ldots
$\mathrm{x}_{2}=0 . \mathrm{a}_{21}$	a_{22}	a_{23}	\ldots
$\mathrm{x}_{3}=0 . \mathrm{a}_{31}$	a_{32}	a_{33}	\ldots

etc.
Where each x_{i} is the decimal expansion of a number between 0 and 1.

Now corrupt each digit along the diagonal - i.e.,
let d_{11} be some $\mathrm{n} \in\{1, . ., 8\} \neq \mathrm{a}_{11}$
let d_{22} be some $\mathrm{n} \in\{1, \ldots, 8\} \mathrm{a} \neq 22$
etc.
but then $0 . d_{11} d_{22} \ldots$ isn't enumerated!

Closure:

Let D be a set, and let $\mathrm{n} \geq 0$,
Let $\mathrm{R} \subseteq \mathrm{D}^{\mathrm{n}+1}$, an $(\mathrm{n}+1)$-ary relation on D .
A subset B of D is closed under R if
$\mathrm{b}_{\mathrm{n}+1} \in \mathrm{~B}$ whenever $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}} \in \mathrm{B}$
in $\left(b_{1}, \ldots, b_{n}, b_{n+1}\right) \in R$.
odd int closed under multiplication? YES. positive integers closed under subtraction? NO.
R^{*} is the reflexive, transitive closure of a binary relation $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$ $=R \cup\{(a, b):$ there is a path in R from a to $b\}$
it is the closure of R under reflexivity and transitivity.

Now, finally moving on to the topic of this course:
Since we'll be investigating models of computing, we need a way to represent data: strings

Definitions:
An alphabet is a finite set of symbols. ex. $\{0,1\}$

A string (word) over an alphabet is a finite sequence of symbols. ex. 00111, 0, abc, aaabbb
a special string is the empty string $=e$
The set of all strings over an alphabet \sum is denoted Σ^{*}.
The length of a word is its length as a sequence
ex. \quad lel $=0$
The concatenation of two strings x and y is denoted $x y$ or $x^{\circ} y$.
($x y$ is a new sequence comprised of the sequence x followed by the sequence y)
a special case is $\mathrm{x}^{\circ} \mathrm{e}=\mathrm{e}^{\circ} \mathrm{X}$
A string v is a substring of w if $\mathrm{vv} \leq \mid \mathrm{wl}$ and $\mathrm{w}=\mathrm{xvy}$ for some x, y. (x and/or y can be empty)

The reversal of a string is the string written backward.
Let $\mathrm{w} \in \sum^{*}$. The reversal of w , denoted w^{R} is as follows:

Def (inductive):

1. if w is a string of length 0 , then

$$
w^{\mathrm{R}}=\mathrm{w}=\mathrm{e} .
$$

2. if w is a string of length $(n+1)>0$, then $w=u a$ for some $a \in \sum$ and

$$
w^{R}=a u^{R}
$$

NOTE:
in genl, will use $\mathrm{a}, \mathrm{b}, \mathrm{c}$ to denote symbols;
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{v}, \mathrm{w}$ to denote words
can use the def above to show that (uv) ${ }^{R}=v^{R} u^{R}$

Examples: of inductive definitions and proofs for strings.
I. a palindrome is a string w such that $w=w^{R}$

Inductive Def:
e is a palindrome
a is a palindrome for each $a \in \sum$
if $\mathrm{a} \in \sum$ and x is a string and a palindrome, then axa is a palindrome.
II. Show that $\left(w^{R}\right)^{R}=w$, for any string w.

Will show by induction on the length of w.
Basis: Let $\mathrm{w}=\mathrm{e}$. Then $\left(\mathrm{w}^{\mathrm{R}}\right)^{\mathrm{R}}=\left(\mathrm{e}^{\mathrm{R}}\right)^{\mathrm{R}}=\mathrm{e}^{\mathrm{R}}=\mathrm{e}=\mathrm{w}$.
I.H. Assume $\left(w^{R}\right)^{R}=w$ for $|w| \leq n$.

Induction Step. Let $|\mathrm{w}|=\mathrm{n}+1$. Then $\mathrm{w}=\mathrm{ua}$ for some $\mathrm{u} \in \Sigma^{*}$ and $\mathrm{a} \in \Sigma$ such that lul $=\mathrm{n}$.

$$
\left(w^{R}\right)^{\mathrm{R}}=\left((\mathrm{ua})^{\mathrm{R}}\right)^{\mathrm{R}}=\left(\mathrm{a}^{\mathrm{R}} u^{\mathrm{R}}\right)^{\mathrm{R}}=\left(\mathrm{u}^{\mathrm{R}}\right)^{\mathrm{R}}\left(\mathrm{a}^{\mathrm{R}}\right)^{\mathrm{R}}=\mathrm{ua}=\mathrm{w} .
$$

