
Lecture 3

Homework #3: 1.4.1, 1.4.2 a & b, 1.5.1, 1.5.3, 1.5.6, 1.5.7, 1.5.8,
Prove that the set of all real numbers is uncountable.

Note that this lecture will likely run over – but the next one is very
short, putting us exactly on track again.

Today: Review of proof techniques:
1) Dovetailing
2) Mathematical Induction
3) Pigeonhole Principle
4) Diagonalization

But first some definitions:

Finite Sets:
size = number of elements;
called cardinality;
denoted |A| for the set A

Definition: 2 sets A and B are equinumerous if there is a bijection
f:A → B.

A set is finite if it is equinumerous with {0,1,2,3, ..., n}, n ∈ N.
N = {0,1,2,3, ..., n}.

A set is countably infinite if it is equinumerous with N.
{i.e., if there's a way to systematically list the elements of the set}

A set is countable if it is finite or countably infinite.

A set of tools for showing a set to be countably infinite:



• Give an explicit bijection between A and some countably infinite
set.  (N is most "natural")
• Suggest a way in which it can be enumerated as {a0, a1, …}
• Recall that an (infinite) subset of a countably infinite set is
countable.
• Recall that the union of a countable number of countably infinite
sets is countable.

Example.  Say that A, B, and C are countably infinite sets.
Show that A ∪ B ∪ C is also countably infinite.

We can write A = {a0, a1, ...}
B = {b0, b1, ...}
C = {c0, c1, ...}

and their union can be listed as {a0, b0, c0, a1, b1, c1, ...}

Again: the intuition is that if you can list the elements, then
the
 set is countable.

But you want to be sure that in your itemization, you're really 
including everything (and not skipping something).  So you 
need a systematic way of being sure each element is listed:

Dovetailing

A

B

C

a0 a1 a2

b1b0 b2

c0 c1 c2

An actual bijection g: N → A ∪ B ∪ C is

g(n) = am, m=(n / 3), when (n % 3 = 0)
bm, m=(n / 3), when (n % 3 = 1)



cm, m=(n / 3), when (n % 3 = 2)

Note: when will dovetailing be a useful tool in this course? toward
the end of the course.

Another example.  (illustrating that the union of a countably infinite
collection of countably infinite sets is countable)

Show that N × N is countable.

N ×  N = ∪({0}× N, {1}× N, {2}× N, ...)

can't visit them in quite the same way as last time, so:

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

if m is the vertical coordinate and n is the horizontal coordinate,
then the pair (m,n) is visited kth, where k = 1/2[(m+n)2 +3m+n]

i.e., f(m,n)= 1/2[(m+n)2 +3m+n] is a bijection from N × N to N

Principle of Mathematical Induction

Let A be a set of natural numbers such that
1) 0 ∈ A

and 2) for each n, if {0,1, ..., n} ∈ A,
then (n+1) ∈ A.

Then A = N

Used to prove: “For all natural numbers n, P is true.”

Example.  Show by induction that
03 +13 +23 +  . . . + n3 = (0+1+2+ ... +n)2

Basis.  Let n = 0; 03 = (0)2 = 0



I.H. Assume that for some n ≥ 0,
 03 +13 +23 +  . . . + m3 = (0+1+2+ ... +m)2 , m ≤ n

Induction Step
      Show 03 +13 +23 +  . . . + (n+1)3 = (0+1+2+ ... +n+n+1)2

03 +13 +23 +  . . . + (n+1)3

= (0+1+2+ ... +n)2 + (n+1)3

= ((n)(n+1)/2)2 + (n+1)2(n+1)

= ((n2 +n)/2)2 + n(n+1)2  + (n+1)2

= (n4 + 2n3 + n2)/4  + 4/4(n)(n+1)2  + 4/4(n+1)2

= (n4  + 6n3  +13n2 + 12n + 4)/4

= (n2 + 3n + 2)2/4

= ((n+1)(n+2)/2)2

= (0 + 1 + 2 + ... + n + n+1)2

Note the types of problems on which induction might be used:
1) proofs of correctness and time complexity.
2) induction on length of the string; induction on the

length of a computation.

The Pigeonhole Principle

If A and B are finite sets and |A| > |B|,
then there is no 1-1 function from A to B.

[try to pair off elements of A with elements of B;
"pigeons" and "pigeonholes"; but you have an extra pigeon.]

Note that we won't use this too often - but it is occassionally useful.
(for instance for the intuition of why there must be cycles in
derivations of certain lengths for regular grammars - Pumping
Lemma.)



The Diagonalization Principle

The intuition is as follows: we're going to systematically
organize/itemize/list things.  then we'll show that there's a way of
creating a legitimate item that should be itemized, but that doesn't
actually fit anywhere in the listing.

The principle:  let R be a binary relation on a set A, and let D (the
"diagonal" set for R) be

{a: a ∈ A and (a,a) ∉ R}

For each a ∈ A, let Ra = (b: b ∈ A and (a,b) ∈ R}

Then D is distinct from each Ra.

Look at it pictorially:

Let A = {a, b, c, d} and let the following table give a relation
R: A × A.

a

a

b

b c

c

d

d

x

x

x

x

x Ra

Rb

Rc

Rd

Now look at the diagonal: x, x, x, _
and flip it: _, _, _, x

This is not the same as any other row.
The same idea can be used for infinite sets.



Example. Show that [0,1) is uncountable.

Assume the contrary, i.e., that [0,1) is countable.  Then the elements
can be itemized as follows:

x1 = 0. a11 a12 a13 ...
x2 = 0. a21 a22 a23 ...
x3 = 0. a31 a32 a33 ...

etc.

Where each xi is the decimal expansion of a number between 0 and
1.

Now corrupt each digit along the diagonal - i.e.,
let d11 be some n ∈ {1, .., 8} ≠ a11
let d22 be some n ∈ {1, ..., 8} a ≠ 22
etc.

but then 0. d11d22... isn't enumerated!


