Lecture 26

Homework #26: <u>4.2.1, 4.2.2, 4.2.3</u>

Convention: Recall from our introduction to Turing Machines that unless specified otherwise, the input to a TM is placed immediately to the right of the left end marker, with the tape head on the first symbol of the input w. Let's add a blank to the front now. This will help us if we want to use some of the handy TMs introduced last time. So now the initial configuration of a TM M on input w is: (s, >#w)

Def. Let $M = (K, \Sigma, \delta, s, H)$ be a TM, such that $H = \{y, n\}$ consists of two distinguished halting states (y and n for "yes" and "no", respectively).

- Any halting configuration whose state component is y is called an accepting configuration.
- A halting configuration whose state component is n is called a rejecting configuration.

We say that M accepts $w \in (\Sigma - \{\#, >\})^*$ iff (s, >#w) yields an accepting configuration;

We say that M rejects w iff (s, >#w) yields a rejecting configuration.

Let $\Sigma_0 \subseteq \Sigma - \{\#, >\}$ be an alphabet, called the input alphabet of M (note that this allows M to have other symbols that it uses in computation).

M decides a language $L \subseteq \Sigma_0^*$ if for any $w \in \Sigma_0^*$ the following is true:

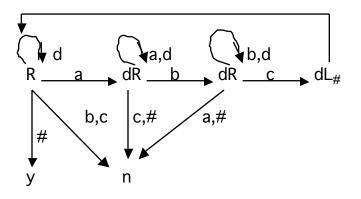
If $w \in L$ then M accepts w; if $w \notin L$ then M rejects w.

A language L is called **recursive** if there is a TM that decides it.

Example. L = $\{a^n b^n c^n : n \ge 0\}$

Let y be a TM that, on any input, immediately transitions to state y; Let n be a TM that, on any input, immediately transitions to state n.

L is decided by the following TM



An important point: Even if a TM has $H = \{y, n\}$, it does not guarantee that the TM decides a language. It may still fail to halt.

Computing with Turing Machines

Let $M = (K, \Sigma, \delta, s, \{h\});$ Let $\Sigma_0 \subseteq \Sigma - \{\#, >\}$ Let $w \in \Sigma_0^*$

Suppose M halts on w, and that (s, >#w) | --* (h, >#y) for $y \in \Sigma_0^*$. y is the **output** of M on **input** w.

```
Denote it M(w).
```

Let f: $\Sigma_0^* \rightarrow \Sigma_0^*$

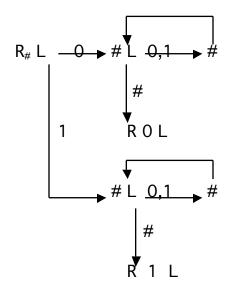
M computes f if, for all $w \in \Sigma_0^*$, M(w) = f(w).

A function f is called recursive, if there is a TM M that computes f.

Example. Consider the function f: $\{0,1\}^* \rightarrow \{0,1\}^*$, defined as

 $f(n) = \begin{cases} 0, & \text{if } n \text{ is the binary representation of an even number} \\ 1, & \text{if } n \text{ is the binary representation of an odd number} \end{cases}$

f is computed by the following TM



A function f: $N^k \rightarrow N$ is recursive if there is a TM M that computes f.

Note that we can't, in general, determine whether a TM decides a given language or computes a given function (because we can't tell whether it will halt on all input).

Def. Let $M = (K, \Sigma, \delta, s, H)$ be a TM. Let $\Sigma_0 \subseteq \Sigma - \{\#, >\}$ be an alphabet.

M semidecides a language $L \subseteq \Sigma_0^*$ if for any $w \in \Sigma_0^*$ the following is true: M halts on input w iff $w \in L$.

A language L is **recursively enumerable** iff there is a TM that semidecides L.

Note that if $w \notin L$, the TM does not halt.

We'll write M(w) = 7 if M fails to halt on input w.

Thm. If a language is recursive, then it is recursively enumerable.

Thm. If L is a recursive language, then its complement is also recursive.

Pf. If L is decided by a TM M = (K, Σ , δ , s, {y, n}), then its complement is decided by a TM that is identical to M, except that the roles of the states y and n are reversed.