Lecture 20

Homework \#20: 3.5.2 c, 3.5.2 d, 3.5.7, 3.5.8, 3.5.14 b, 3.5.14 a , c [NOTE: For 3.5.8, use 3.5.7, but don't have to prove it.]

Today we turn to

Periodicity properties:

Like regular languages, CFLs display some periodicity (i.e., repetition).
Let's look at an example in preparation for a Pumping Lemma for CFLs.
Consider a CFG with the following rules:
$S \rightarrow A B$
$\mathrm{A} \rightarrow \mathrm{aA}$
$A \rightarrow e$
$\mathrm{B} \rightarrow \mathrm{bB}$
$B \rightarrow e$
and now consider the following parse tree

Pumping Thm for CFLs: Let G be a CFG. Then there is a number K, depending on G, such that any string w in $L(G)$ of length $>K$ can be written as $w=u v x y z$ such that either v or y is non-empty and $u v^{n} x y^{n} z$ is in $\mathrm{L}(\mathrm{G})$ for every $\mathrm{n} \geq 0$.

Pf. Let $G=(V, \Sigma, R, S)$
We'll show that there is a number K such that any string of terminals with length > K has a derivation of the form:

$$
\begin{aligned}
& S \Rightarrow^{*} u A z \Rightarrow^{*} u v A y z \Rightarrow^{*} u v x y z \\
& u, v, x, y, z \in \Sigma^{*} \\
& A \in V-\Sigma \\
& v \text { or y non-empty }
\end{aligned}
$$

and we can repeat $A \Rightarrow^{*} v A y$ multiple times to get $v^{n} A y^{n}$.
Let $p=$ largest number of symbols on the right-hand side of a rule in R.

Now, a parse tree of height m can have at most p^{m} leaves.

So if a parse tree T has yield of length $>\mathrm{p}^{m}$, then T has some path of length > m.

Now, let $m=|V-\Sigma| \quad$ (the number of non-terminals) and let $K=p^{m}$

Now suppose whas length $>\mathrm{p}^{\mathrm{m}}$ (i.e., K)
And let T be its parse tree.
T has at least 1 path with number of nodes $>|V-\Sigma|+1$.
So at least that 1 path has 2 nodes labeled with the same non-terminal.
Follow the path being discussed up toward the root of the tree, stopping at the second instance of the repeated non-terminal. Now consider the subtree of T rooted at this node. Call the subtree T^{\prime}.

Both v and y can't be e. (that is, can't have $v=y=e$). if so, you could just remove the part of the path from A to A, with no effect on the yield of the tree. If you removed all such segments you'd get a tree with yield w and height $<\mathrm{m}$.

Now, this defines what $\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}$ are.
Clearly, you can repeat the A-rooted subtree any number of times, including 0 - that is, by "pulling up" the 2nd A-rooted subtree.

Note that the number p we've discussed here is called the fanout of G and is denoted $\phi(\mathrm{G})$.

We do not use the Pumping Theorem to show that a language is context free. We do, however, use it to show that a language is not (by showing that the languages violate the theorem).

Classic example. $\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not context free.
Pf. Suppose $L=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is context free.
Then $L=L(G)$ for $G=(V, \Sigma, R, S)$
Let K be the constant specified by the pumping thm, and let $\mathrm{j}>\mathrm{K} / 3$.
Then $w=a^{j} \mathrm{~b}^{\mathrm{j}} \mathrm{c}^{j} \in \mathrm{~L}(\mathrm{G})$ and $\mathrm{lwl}>\mathrm{K}$.
So w can be written as uvxyz such that v or $y \neq e$, and $u v^{i} x y^{i} z \in L(G)$ for all $\mathrm{i} \geq 0$.

Now consider the possibilities for v and y :
I. $\quad v$ or y contains 2 different symbols from $\{a, b, c\}$. Then they will alternate when pumped, producing a string not in the language.
II. $\quad v$ and/or y contain all a's or all b's or all c's. Pumping on any one or two of the 3 symbols leads to an imbalance.

