Lecture 2

Homework #2: 1.2.3, 1.3.1 (for R • R), 1.3.2a "S" only, 1.3.4, 1.3.5, 1.3.7, 1.3.9

TRUE & FALSE - important to review what it means for a statement to be true or false - especially since we're going to be concerned with proving statements to be one or the other

Intuitive notion of TRUE: *This class meets in TCL 206*

What happens when you start combining sentences:

p∧q T F F	p T T F	_q T F T		<u>p v q</u> T T T	p T T F	q T F T
F	F	F		F	F	F
if pt T F T T	hen q	<u>(¬p v q)</u>	p T T F F	q T F T F		

Proving (if p then q)

1) assume that p is true; show that q is also true

2) prove by contradiction: assume q to be false; show that you

get an inconsistency with p.

Note that (q if p) means the same thing

But (q only if p) does not. (q only if p) means (if q then p) (if q then p) is the **converse** of (if p then q)

So... $(p \text{ iff } q) = (if p then q) \land (if q then p)$

p iff q	p	q
T	Ť	Ť
F	Т	F
F	F	Т
Т	F	F

Need to prove each of the two parts

Now, some notes on sets

2 sets are equal iff they have the same elements. To prove 2 sets equal: Show that

 $A \subseteq B \text{ and } B \subseteq A$

There are various ways in which sets can be combined: you know them, and they're in the book (union, intersection, ...)

Laws about the ways in which sets combine:

Example. Distributive Laws

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

To prove this, will show that:

- 1) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ and
- $2) \qquad (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$
- 1) Let $x \in A \cup (B \cap C)$ Then x is in A, or x is in B and C.

if x is in A, then $x \in (A \cup B)$; and $x \in (A \cup C)$. But then $x \in (A \cup B) \cap (A \cup C)$.

```
if x is in B and C, then

x \in (A \cup B);

and x \in (A \cup C).

But then x \in (A \cup B) \cap (A \cup C).
```

So $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

2) Let $x \in (A \cup B) \cap (A \cup C)$ Then x is in $(A \cup B)$ and x is in $(A \cup C)$ So x is in A or x is in B and C. i.e., $x \in A \cup (B \cap C)$

So $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

- From 1) and 2) it follows that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- A × B is the Cartesian Product of 2 sets: all ordered pairs (a,b) s.t. $a \in A, b \in B$.
- A (binary) **relation** is a subset of A × B (in basic terms, it's a set of items that are "related to" each other in a particular way)

A **function** from A to B is a relation where for each $a \in A$ there is one and only one ordered pair with first component a. [f(a) has only one value]

{*Explain how the difference between relations and functions will be illustrated by the models of computation we'll be considering*}

f: A→B is **onto** B if each element in B is f(a) for some a. f: A→B is **one-to-one** if for all $a \neq a_1$, $f(a) \neq f(a_1)$. f: A→B is a **bijection** if it is one-to-one and onto.

Probably more familiar with functions than with relations:

Relations can be combined in a manner similar to functions:

Example. Let $R = \{(a,b), (a, c), (c, d), (a, a), (b, a)\}$

 $R \circ R = \{(a, a), (a, d), (a, b), (a, c), (b, b), (b, c), (b, a)\}$ composition

 $R^{-1} = \{(b, a), (c, a), (d, c), (a, a), (a, b)\}$

Now, let's consider a special type of binary relation:

 $R \subseteq A \times A$ (a relation on a set and itself) (can also say A^2)

Can represent R by a directed graph. This might be useful for visualizing properties of R.

(Pictorial representations of various automata will follow this model.)

each element of A is a node; arc from $a \rightarrow b$ iff $(a,b) \in R$.

Example. {(a,c), (c,e), (e,e), (e,b), (d,b), (d,d)}

Now, some definitions:

- 1) $R \subseteq A \times A$ is **reflexive** if $(a,a) \in R$ for each $a \in A$. (pictorially, loop from each node to itself)
- 2) $R \subseteq A \times A$ is **symmetric** if $(a,b) \in R$ whenever $(b,a) \in R$ (pictorially, a loop between pairs of nodes)
- 3) $R \subseteq A \times A$ is antisymmetric if whenever $(a,b) \in R$, $(b,a) \notin R$, for $a \neq b$.

(pictorially, no loops between pairs)

4) $R \subseteq A \times A$ is **transitive** if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$.

An **equivalence** relation is one that is reflexive, symmetric, and transitive.

(reflexive, antisymmetric, and transitive is a partial order)

Example.

Reflexive?NOSymmetric?NOTransitive? NO