Lecture 2

Homework \#2: 1.2.3, 1.3.1 (for R•R), 1.3.2a "S" only, 1.3.4, 1.3.5, 1.3.7, 1.3.9

TRUE \& FALSE - important to review what it means for a statement to be true or false - especially since we're going to be concerned with proving statements to be one or the other

Intuitive notion of TRUE:
This class meets in TCL 206
What happens when you start combining sentences:

Proving (if p then q)

1) assume that p is true; show that q is also true
2) prove by contradiction: assume q to be false; show that you
get an inconsistency with p.
Note that (q if p) means the same thing
But (q only if p) does not. (q only if p) means (if q then p)
(if q then p) is the converse of (if p then q)
So... $(\mathrm{p}$ iff q$)=($ if p then q$) \wedge($ if q then p$)$

p iff q	p	q
T	T	T
F	T	F
F	F	T
T	F	F

Need to prove each of the two parts
Now, some notes on sets
2 sets are equal iff they have the same elements.
To prove 2 sets equal: Show that
$A \subseteq B$ and
$B \subseteq A$
There are various ways in which sets can be combined: you know them, and they're in the book (union, intersection, ...)

Laws about the ways in which sets combine:
Example. Distributive Laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
To prove this, will show that:

1) $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$ and
2) $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$
3) Let $x \in A \cup(B \cap C)$

Then x is in A , or x is in B and C .
if x is in A, then $x \in(A \cup B)$;
and $x \in(A \cup C)$.
But then $x \in(A \cup B) \cap(A \cup C)$.
if x is in B and C, then
$x \in(A \cup B)$;
and $x \in(A \cup C)$.
But then $x \in(A \cup B) \cap(A \cup C)$.
So $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$
2) Let $x \in(A \cup B) \cap(A \cup C)$

Then x is in $(A \cup B)$ and x is in $(A \cup C)$
So x is in A or x is in B and C .
i.e., $x \in A \cup(B \cap C)$

So $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$
From 1) and 2) it follows that
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$\mathrm{A} \times \mathrm{B}$ is the Cartesian Product of 2 sets:
all ordered pairs (a, b) s.t. $a \in A, b \in B$.
A (binary) relation is a subset of $A \times B$
(in basic terms, it's a set of items that are "related to" each other in a particular way)

A function from A to B is a relation where for each $a \in A$ there is one and only one ordered pair with first component a.
[$\mathrm{f}(\mathrm{a})$ has only one value]
\{Explain how the difference between relations and functions will be illustrated by the models of computation we'll be considering\}
$f: A \rightarrow B$ is onto B if each element in B is $f(a)$ for some a.
$f: A \rightarrow B$ is one-to-one if for all $a \neq a 1, f(a) \neq f\left(a_{1}\right)$.
$\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijection if it is one-to-one and onto.
Probably more familiar with functions than with relations:
Relations can be combined in a manner similar to functions:
Example. Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{a})\}$
$\mathrm{R}^{\circ} \mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{d}),(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{b}, \mathrm{a})\}$ composition
$R^{-1}=\{(b, a),(c, a),(d, c),(a, a),(a, b)\}$
Now, let's consider a special type of binary relation:
$\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$ (a relation on a set and itself) (can also say A^{2})
Can represent R by a directed graph. This might be useful for visualizing properties of R.
(Pictorial representations of various automata will follow this model.)
each element of A is a node; arc from $a \rightarrow b$ iff $(a, b) \in R$.

Example. \{(a,c), (c,e), (e,e), (e,b), (d,b), (d,d)\}

Now, some definitions:

1) $R \subseteq A \times A$ is reflexive if $(a, a) \in R$ for each $a \in A$.
(pictorially, loop from each node to itself)
2) $\quad R \subseteq A \times A$ is symmetric if $(a, b) \in R$ whenever $(b, a) \in R$ (pictorially, a loop between pairs of nodes)
3) $R \subseteq A \times A$ is antisymmetric if whenever $(a, b) \in R$, $(b, a) \notin R$, for $\mathrm{a} \neq \mathrm{b}$. (pictorially, no loops between pairs)
4) $R \subseteq A \times A$ is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$.

An equivalence relation is one that is reflexive, symmetric, and transitive.
(reflexive, antisymmetric, and transitive is a partial order)

Example.

