
Lecture 16

Homework #16: 3.2.2, 3.2.3, 3.2.4b

Today: a different way to represent derivations.

Consider
S → AB
A → aA A → e B → bB B → e

and now consider a new representation of a derivation:

Parse Tree:
root = genly the start symbol
intermediate nodes = non-terminals
leaves = terminals

read the terminals left to right.

S

A

A

A

A

B

B

a

a

a

b

e

e

string is: aaab

Def. Parse tree, root, leaves, yield for an arbitrary G = (V, Σ, R, S).

(1) •a is a parse tree.
the single node is both a root and a leaf.
Note: a ∈ Σ.

(2) if A → e is a rule in R

A

e is a parse tree
the root is labeled A
the one leaf is labeled e
yield is e.

(3) if

T1 Tn

A1 An

y1 yn
.

are parse trees and A → A1 . . . An ∈ R

then

T1 Tn

A1 An

y1 yn
.

A

is a parse tree.
the root is A
the leaves are the leaves of the constituent trees

yield is y1...yn

Def. A path is a sequence of nodes from root to leaf.

The height of the parse tree is the length of the longest path.

Parse trees represent derivations of strings in L(G) so that the superficial
differences between derivations, owing to the order of application of
rules, are suppressed.

Leftmost and rightmost derivations

A leftmost derivation exists in every parse tree – obtained by repeatedly
replacing the leftmost non-terminal.

A rightmost derivation exists in every parse tree – obtained by repeatedly
replacing the rightmost non-terminal.

Thm. Let G = (V, Σ, R, S) be a context-free grammar, and let A ∈ V-Σ, and
w ∈ Σ*. Then the following stmts are equivalent:

(a) A ⇒* w
(b) There is a parse tree with root A and yield w.
(c) There is a leftmost derivation A ⇒L* w.
(d) There is a rightmost derivation A ⇒R*w.

Again, parse trees represent derivations without superficial differences of
order of rule application. However…

Parse trees will be different, of course, for a different choice of rules to
apply.

For instance, consider the following grammar for generating boolean
expressions without parentheses.

R: E → E || E E → E && E
E → ! E E → B (Boolean value)
E → N (Named Boolean var)
B → true | false
N → x1 | x2 | x3

E ⇒ E || E ⇒ ! E || E ⇒ ! N || E ⇒ ! x1 || E ⇒ ! x1 || N

⇒ ! x1 || x2

E ⇒ E || E ⇒ E || N ⇒ ! E || N ⇒ ! N || N ⇒ ! x1 || N
⇒ ! x1 || x2

vs

E ⇒ ! E ⇒ ! E || E ⇒ ! N || E ⇒ ! x1 || E ⇒ ! x1 || N
⇒ ! x1 || x2

The first two generate the same parse tree. The third is completely
different.

Grammars with strings that have two or more distinct parse trees are
called ambiguous.

Can sometimes disambiguate a grammar by restructuring it.

There are some CFLs with the property that all CFGs generating them are
ambiguous – call these inherently ambiguous.

Ex. {aibjck | i=j or i=k}

Every string anbncn has two distinct derivations.

