
Lecture 11

Homework #11: 2.4.2, 2.4.3 (not b), 2.4.4, 2.4.5 a (can follow hint to
use intersection, but not necessary), 2.4.7, 2.4.8

Hand in: 2.4.3 a, c, f
2.4.5 a
2.4.8  a, b, c

We now have a number of tools that allow us to show that a
language is regular:

(1) We can do a direct construction of a DFA, NFA, or regular
expression.
(2) We can construct one of the above out of simpler versions.
(3) We can refer to the Closure Theorem.

Some nice examples in the text.  Here is another:

Show that LR is regular, where LR = {x: xR ∈ L}.

Let L = L(M), where M = (K, Σ, δ, s, F)
[Note that I have chosen M to be deterministic]

Pictorially, let's think about what we can do:

Let's (1) reverse all the transitions.
(2) create a new start state with e-transitions to the final 

states of M.
(3) make the start state of M a final state of the new FA.



Define MR = (K ∪ {sR}, Σ, Δ, sR, {s}),

Δ = {(sR,e,q): q ∈ F} ∪ {(q,a,p): δ(p,a) = q}

Now . . . how to show that a language is not regular

First, let's consider what makes a language regular:

(1) generally, simple periodicity

ab*a

    i.e., simple repetition of a pattern

(2) very limited memory

the classic example: {anbn: n > 0}
is not regular - no way to remember the number of a's 
while you're counting b's.

Thm. (Pumping Thm) Let L be an infinite regular language.  Then
there are strings x, y, z such that y ≠ e and x yn z ∈ L for each n ≥ 0.

Note:
The pumping theorem refers only to infinite languages.  
Remember that every finite language is regular.

The theorem will be useful for showing that languages are not 
regular - by showing that the strings x, y, z don't exist such 
that . . .

Proof. If L is a regular language, then it is accepted by some DFA M.

Suppose M has n states.

L is infinite, so it has some string w, such that |w| > n.

Let |w| = m and w = σ1σ2σ2...σm

Now consider the computation of M on w:



(q0,σ1σ2σ2...σm)  (q1,σ2σ2...σm) . . .  (q(m-1),σm)  
(qm,e)

q0 = the start state
qm ∈ F

Since m ≥ n and M has n states, there must be some
qi = qj 0 ≤ i < j ≤ m

by the Pigeonhole Principle.

This means that the string σi+1...σj starts at state qi and loops 
back to state qi.

But then you could remove the string and the resulting string 
would still be accepted

or

you could follow the cycle any number of times.

That is, M accepts

σ1...σi(σi+1...σj)nσj+1...σm   n ≥ 0

The following picture might help to visualize what's
happening:

q0 qi=qj qm
q(i+1)

. . .

q(j-1)

Then x = σ1...σi
y = σi+1...σj
z = σj+1...σm



Note that y (the string being repeated) must be pretty close to the
beginning of the string - or you would have started to re-use states
earlier.

So we have a stronger version of the Pumping Thm:

Thm. (Pumping Thm) Let L be an infinite regular language.
There is an integer n ≥ 1 such that any string w  ∈ L with |w| ≥ n can
be rewritten as w = xyz such that y ≠ e, |xy| ≤ n, and x yi z ∈ L for
each
 i ≥ 0.

Let M = (K, Σ, δ, s, F) be a DFA, and let w be any string in L(M) 
such that |w| ≥ |K| = n.

Let |w| = m.

w = σ1σ2. . .σm, where each σi ∈ Σ.

Now consider the computation of M on w:

(s,w) = (s,σ1σ2. . .σm)  (q1,σ2. . .σm) . . . (qm-1,σm)  (qm,e),
qm ∈ F.

And, in particular, let’s focus on the first n steps of the
computation:

(s,σ1σ2. . .σnσn+1. . .σm)  (q1,σ2. . .σnσn+1. . .σm) . . .
(qn-1,σnσn+1. . .σm)  (qn, σn+1. . .σm)

In order to process the first n symbols of w, n steps are
 required, and n+1 configurations are represented in the
 computation. Since n+1 > |K|, there must be some qi = qj in the
 first n steps of the computation. (i < j). [By the Pigeonhole
 Principle]

Let x = σ1σ2. . .σi (or x=e if qi=s)
Let y = σi+1. . .σj
Let z = σj+1. . .σm (z=e if j=m)

Then the above computation can be written:



(s,w) = (s,xyz) * (q,yz) . . . (q,z) * (qm,e), q=qi=qj.

But (q,yz) * (q,z) iff (q,y) * (q,e)
iff (q,yk) * (q,e), k ≥ 0
iff (q,ykz)  * (q,z)

Also (s,xyz) * (q,yz) iff (s,x) * (q,e)
iff (s,xykz) * (q,ykz)

So (s,xykz) * (q,ykz) * (q,z) * (qm,e) , k ≥ 0,
qm ∈ F.

Now, back to the classic example.

Show that L = {anbn: n ≥ 0} is not regular.

Assume the contrary.  If it is regular, then there are strings x, 
y, z such that y ≠ e and x yn z ∈ L.

Let's look at the different possibilities for what y might be, and
show that x yn z ∉ L for all the possibilities.

I. y is all a's.
x = ap

y = aq

z = arbs s = p+q+r

but then x yn z = apaq(n)arbs, which is clearly not in L.

II. y is all b's.
similar argument.

III. y is arbs

but then yn will have alternating a's and b's, so the
resulting string will not be in L.

The argument is even easier to make by the stronger version of the
Pumping Lemma.

Now what about {ww | w ∈ {a,b}*}?  Is it regular?  Why or why not?


