Lecture 10

Homework \#10: 2.3.4, 2.3.7 b [from left to right, label the states 2, 1, 3]
(nothing to hand in)

Thm. A language is regular iff it is accepted by a FA.
(\Rightarrow) If a language is regular, it is accepted by a finite automaton.
The proof will follow from the definition of a regular language: the regular languages are the smallest class of languages containing \varnothing and the singletons $\{\sigma\}$, where σ is a symbol (or e), and closed under union, concatenation, and Kleene Star.
\varnothing is clearly accepted by a FA:

$$
>
$$

as is $\{\sigma\}$, for any symbol, including e, representing the empty string:

Furthermore, by the theorem last time, the languages accepted by FA are closed under union, concatenation, and Kleene Star.

Thus every regular language is accepted by a FA.

Example. $\left((\mathrm{a} \cup \mathrm{b})^{*} \mathrm{c}^{*}\right)$

$>\bigcirc \xrightarrow{\mathrm{b}}$ (0)

(\Leftarrow) If a language is accepted by a FA, then it is regular.
Assume that M is a DFA (wlog). Show that $R=L(M)$ is regular.
Let $\mathrm{M}=(\mathrm{K}, \Sigma, \delta, \mathrm{s}, \mathrm{F})$. We'll be thinking of $\mathrm{L}(\mathrm{M})$ as the union of a number of smaller languages.

Let $\mathrm{K}=\{\mathrm{q} 1, \mathrm{q} 2, \ldots, \mathrm{qn}\}, \mathrm{s}=\mathrm{q} 1$. [We're just re-naming the states and putting them in an order, with no effect on the actual FA.]

For $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n} \quad$ and $\quad 0 \leq \mathrm{k} \leq(\mathrm{n})$

Let $\mathrm{R}(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ all strings that drive M from qi to qj without going through states numbered higher than qk. [You can go to it, but not through it.]

That is:

$$
\begin{aligned}
& R(i, j, k)=\left\{x \in \Sigma^{*}:(q i, x) \mid —^{*}(q j, e)\right. \text { and } \\
& \text { if }(q i, x) \mid —^{*}(q m, y) \text { then } \begin{array}{l}
y=e \text { and } m=j \text { or } \\
\begin{array}{l}
y=x \text { and } m=i \text { or } \\
m \leq k
\end{array}
\end{array}
\end{aligned}
$$

Now let's specifically consider $\mathrm{R}(1, \mathrm{j}, \mathrm{n})$ - what does this mean? It's all the strings that take you from the start state to qj.

Now, what about $R(1, j, \mathrm{n})$ if qj is a final state? It's all strings accepted by reaching qj.

So $L(M)=U\{R(1, j, n): q j \in F\}$
What we'll show is that each of these $\mathrm{R}(1, \mathrm{j}, \mathrm{n})$ is regular - so their union is as well.

The proof will be (as usual) by induction.

Basis.

$$
\begin{aligned}
\{R(i, j, 0): q j & \in F\}=\{\sigma \in \Sigma: \delta(q i, \sigma)=q j\}, \text { if } i \neq j \\
& \text { or }\{e\} \cup\{\sigma \in \Sigma: \delta(q i, \sigma)=q j\}, \text { if } i=j
\end{aligned}
$$

These are finite, and therefore regular.
I.H. Assume each $R(i, j, n-1), n \geq 1$ is regular.

Now consider $\mathrm{R}(\mathrm{i}, \mathrm{j}, \mathrm{n})$

$$
R(i, j, n)=R(i, j, n-1) \cup R(i, n, n-1) R(n, n, n-1) * R(n, j, n-1)
$$

Since each of these is regular, so is $R(i, j, n)$

Example.

$R(1,2,2)=R(1,2,1) \cup R(1,2,1) R(2,2,1) * R(2,2,1)$
$R(1,2,1)=R(1,2,0) \cup R(1,1,0) R(1,1,0) * R(1,2,0)$
$R(2,2,1)=R(2,2,0) \cup R(2,1,0) R(1,1,0) * R(1,2,0)$
$R(1,2,0)=b$
$R(1,1,0)=a \cup e$
$R(2,2,0)=a \cup e$
$R(2,1,0)=b$
Substituting:

$$
\begin{aligned}
& R(1,2,1)=b \cup(a \cup e)(a \cup e)^{*} b=a^{*} b \\
& R(2,2,1)=(a \cup e) \cup b(a \cup e)^{*} b=(a \cup e) \cup b a^{*} b \\
& R(1,2,2)=a^{*} b \cup a^{*} b\left((a \cup e) \cup b a^{*} b\right) *\left((a \cup e) \cup b a^{*} b\right)=a^{*} b(a \cup \\
& \left.b a^{*} b\right)^{*}
\end{aligned}
$$

