Event-Driven Programming Facilitates Learning Standard
Programming Concepts

Kim B. Bruce
kim@cs.williams.edu

Andrea Danyluk
andrea@cs.williams.edu

Thomas Murtagh
tom@cs.williams.edu

Department of Computer
Science
Williams College
Williamstown, MA 01267

ABSTRACT

We have designed a CS 1 course that integrates event-driven
programming from the very start. In [2] we argued that
event-driven programming is simple enough for CS 1 when
introduced with the aid of a library that we have developed.
In this paper we argue that early use of event-driven pro-
gramming makes many of the standard topics of CS 1 much
easier for students to learn by breaking them into smaller,
more understandable concepts.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education)]:
Computer Science Education

General Terms

languages

Keywords

CS 1, event-driven programming, Java

1. INTRODUCTION

A few years ago we implemented a major update of our CS
1 course, which is now based on Java. With the support of
the specially designed objectdraw library, this course takes
an objects-first approach, uses truly object-oriented graph-
ics, incorporates event-driven programming techniques from
the beginning, and includes concurrency quite early in the
course.

The objectdraw library eliminates much of the syntac-
tic overhead of writing programs in an event-driven style,

*Research partially supported by NSF CCLI grant DUE-
0088895.

yet provides an easy transition to the standard Java event-
handling style of programming. The library also supports
the use of object-oriented geometric figures, which allows
students to write quite interesting programs in an event-
driven style after only a few lectures. For example there are
classes that represent framed and filled rectangles, ovals,
and arcs, as well as as lines, text, and images, all of which
can be created on a canvas. They all support methods to
change their dimensions, location, and color, as well as to
determine whether a point is contained in the graphic ob-
ject. Moreover, changes to objects show up immediately on
the canvas without requiring calls of repaint, as is required
with standard Java.

Concurrency is introduced in the fourth week of classes,
at the same time as while loops, enabling interesting exam-
ples involving animations. As argued in our earlier papers [3,
2], the combination of object-oriented graphics, event-driven
programming, and concurrency provides for a very interest-
ing and pedagogically sound introduction to programming.

In this paper we argue that the use of an event-driven
programming style from the beginning also allows instruc-
tors to provide more effective introduction to standard CS
1 material such as loops, parameters, and class definitions.

2. INTRODUCING EVENT-DRIVEN PRO-
GRAMMING EARLY

In [3] and [2], we describe the library we created to support
our approach and how it can be used to teach event-driven
programming early in CS 1. There are several reasons for
introducing event-driven programming early. First, modern
programs in wide distribution tend to use graphic user inter-
faces and react to user-generated events, and students need
to learn how to program in this style [6, 11, 13]. Another
reason is that the use of GUI interfaces and event-driven
programming is highly motivating for students, especially
when compared with traditional programming involving line
by line text input and output [7, 9]. Finally, line by line text
input in Java is quite complicated, requiring students to un-

Permission to make digital or hard copies of all or part of this work for derstand and catch exceptions.

personal or classroom use is granted without fee provided that copies are While many observers agree on these benefits for event-
not made or distributed for profit or commercial advantage and that copies driven programming, there are concerns that event-driven
bear this notice and the full citation on the first page. To copy otherwise, t0 ,rogramming is too difficult for novices [12, 10]. This argu-
republish, to post on servers or to redistribute to lists, requires prior specific |\ .+ 12« considerable validity if students are forced to use

permission and/or a fee. th 1 tools developed f fessional
OOPSLA'040ct. 24-28, 2004, Vancouver, British Columbia, Canada. € very general 10ols developed lor prolessional prograim-

Copyright 2004 ACM 1-58113-833-4/04/001G55.00. mers. For example, event-driven programming with GUI

Figure 1: “V” formed by dragging the mouse while
running class Squares

components in standard Java requires programmers to

1. Create and initialize the GUI component (e.g., create
a a pop-up menu using JComboBox and add the choices
to it).

2. Add the component to a container object.

3. Ensure that the listener class implements the appro-
priate listener interface by writing the method to be
executed when an event is generated by the compo-
nent.

4. Add an object from the listener class as a listener to
the component.

To accomplish this clearly requires more knowledge than
students can be expected to have early in an introductory
course. To enable novices to program in this style, our li-
brary contains a WindowController class that creates a spe-
cialized canvas and inserts it into the center of a JApplet.
This WindowController class implements the MouseListener
and MouseMotionListener interfaces and contains stub meth-

ods corresponding to all of the event-handling methods promised

by those interfaces. Students are told that their event-
handling classes should extend the WindowController class
and are provided with the names and signatures of methods
that should be written in order to handle the appropriate
mouse events.

The following is a simple program that draws a series of
small filled squares on the canvas when the mouse is dragged.

public class Squares extends WindowController {

// draw square at mouse location after each drag
public void onMouseDrag(Location mouseLoc) {
new FilledRect(mouselLoc, 4, 4, canvas);
}
}

A picture showing what would be produced if the user dragged
the mouse in the shape of a “V” is shown in Figure 1.

Readers are encouraged to compare the complexity of this
program with a standard Java program producing the same
effect.

3. EVENT-DRIVEN PROGRAMMING AS FA-
CILITATOR

In this section we argue that the use of an event-driven
approach from the beginning allows instructors to provide a
more effective introduction to standard CS 1 materials. In
particular, we discuss the following topics:

e classes,
e parameters, and
e loops,

and show how an event-driven approach makes these con-
cepts easier to learn.

3.1 Classes

Many instructors would like to use an objects-first ap-
proach in CS 1, but run into several roadblocks. In order
to write classes, students need to be able to write instance
variable declarations and method definitions. Method def-
initions include the use of parameters as well as the state-
ments inside of method bodies. This may lead one to believe
that students need to spend six weeks or more learning basic
programming concepts before they are ready to write their
first classes.

Given this, instructors typically look for good examples of
pre-defined classes for students to work with so that they can
at least get some experience with sending messages to ob-
jects before introducing the notion of writing classes. How-
ever, even if the instructor succeeds in finding such classes,
students will likely start out writing a static main method
that looks entirely different from the methods that appear
in most classes students will design.

We use a truly object-oriented library of graphics objects
(see [3]) and event-driven programming to solve these prob-
lems. Because the graphics objects are stateful and changes
(e.g., a response to a move message) appear instantly on the
screen, students get good feedback on the results of sending
messages.

The event-driven programming style that we introduce re-
sults in students learning how to use methods and instance
variables in a very restricted context in the first week of the
course. Students are given the method names and param-
eters for each of the event-handling methods. They need
only write the appropriate method bodies, which tend to be
quite simple (see the example above).

Students use instance variables to “remember” informa-
tion that must be retained between method invocations.
These are quite easy for students to use, and fairly interest-
ing programs can be written without any use of loops. As
an example, consider the following program that prompts a
user to draw in a window by dragging the mouse:

public class Scribble extends WindowController {

// remembers location from which to draw
private Location oldPoint;

// display message to user at start-up
public void begin() {
new Text("Drag the mouse to draw",40,20,canvas);

}

// remember where mouse went down

public void onMousePress(Location point) {
oldPoint = point;
}

// draw line from last point to new mouse location
public void onMouseDrag(Location point) {
new Line(oldPoint, point, canvas);
oldPoint = point;
}
}

Note how little students need to know to write this simple
program that has fairly sophisticated behavior.

An important benefit gained from using event-driven pro-
gramming is that the methods written by students are nat-
urally short, eliminating the necessity of nagging students
to break programs into smaller pieces.

By the time our students are ready to design their own
classes in the third week of our course, they are already fa-
miliar with writing classes (which extend WindowController),
declaring instance variables, writing the bodies of simple
methods, and using formal parameters. The new topics
at that point involve writing constructors and determining
names and parameters for the methods in the new class.
Even these are natural extensions of concepts they have
seen. For example, students use a class constructor for the
same purpose as the begin method used in extensions of
WindowController, such as that given above.

Our first examples of writing classes involve graphic im-
ages that behave similarly to the graphic objects in the li-
brary. For example, we design a T-shirt class that gen-
erates T-shirts that can be moved on the screen. Thus,
even the method names, such as move, are similar to those
they have seen before, except that rather than only using
the method names in sending messages to objects from pre-
defined classes, students write the method declarations and
bodies.

Moreover, the methods that students write are similar to
the event-driven methods they have been writing in that
they are executed on demand. The Java applications writ-
ten early in many CS 1 courses consist of a static main
method which is executed to completion (perhaps invok-
ing other methods). With such examples there is a strong
notion of a predetermined execution path. By contrast, the
event-driven methods are called only when an action occurs.
When they finish, the system waits for another event. The
methods in normal classes, like the T-shirt class mentioned
above, are also called by an external action, this time by an-
other object sending a message; upon completion the object
remains in existence, waiting for another message.

Thus by starting with event-driven programming, we make
it easy for students to make the transition from writing sim-
ple methods in a class with event-driven methods to the
more general situation of a class with methods that may be
called in an undetermined order.

3.2 Parameters

One of the most difficult aspects for students to under-
stand, when learning to write methods or procedures, is the
use of parameters and the correspondence between actual
and formal parameters. In typical introductory courses stu-
dents encounter this correspondence for the first time when
moving from monolithic main procedures/methods to writ-
ing helper methods which abstract away some of the com-

plexity.

With an event-driven approach, students never write mono-
lithic procedures or methods. Instead they begin by writing
small method bodies which respond to various user actions.
While the first examples presented can ignore parameters,
students are soon shown how to use the formal parameters
in the method declarations. In the Squares class above, for
example, our students learn that they can use the formal pa-
rameter, mouseLoc, to specify where the new squares should
be drawn. They are simply told that when the method is
invoked, the value of mouseLoc will be the location of the
mouse. In particular, the students don’t yet need to con-
front the notion of the correspondence between formal and
actual parameters.

At the same time, our students gain experience creating
and using objects generated from the graphics library. Thus
they invoke both constructors and methods, some with mul-
tiple parameters. In this case, they supply the actual param-
eters, but, because they do not see the method bodies, they
still do not have to face the issues of the correspondence
between formal and actual parameters.

When students begin to define classes, this prior experi-
ence with both actual and formal parameters, though each
separate from the other, provides the background to help
students better understand the notions of formal-actual pa-
rameter correspondence. When defining a T-shirt class, for
example, students see methods similar to those they have
used with the geometric objects, and can see how the ac-
tual parameters provided with message sends end up corre-
sponding with the formal parameters used inside the method
bodies.

Most introductory courses using an object-oriented ap-
proach do have students sending messages to objects from
predefined classes early on, gaining experience with using
actual parameters, but experience with formal parameters
is usually postponed until several weeks later when students
write methods for the first time. Our event-driven approach
has students writing methods and using formal parameters
from the first week of classes. Yet they do not have to face is-
sues of formal-actual correspondence until a few weeks later.

3.3 Loops

One of the most interesting aspects of using event-driven
programming is that one can write programs with repetitive
behavior without involving loops. The class Squares above
is a good example in that dragging the mouse around on the
screen results in repetitively drawing squares.

One can take advantage of this behavior to help students
learn to program loops. For example, consider the follow-
ing program. It initially draws the ground and sun on the
canvas. It then draws a new blade of grass each time a user
clicks the mouse. The resulting picture is shown in Figure
2.

public class Grass extends WindowController {
// constants omitted

// x-coord of next blade of grass
private double bladePos;

// draw solid ground and sun
public void begin() {
new FilledRect(0,GROUND_LINE, SCREENWIDTH,
SCREENHEIGHT-GROUND_LINE, canvas);

® O O Applet Viewer: Grass.class

AEpIet started. i

Figure 2: Sun, earth, and grass

new FilledOval (SUN_INSET,SUN_INSET,
SUN_SIZE,SUN_SIZE, canvas);
bladePos = 0;
}

// grow new blade of grass with each mouse click
public void onMouseClick(Location point) {
if (bladePos < SCREENWIDTH) {
new Line(bladePos,GRASS_TOP,
bladePos,GROUND_LINE, canvas);
bladePos = bladePos + GRASS_SPACING;
}
}
}

If the students have already seen conditional statements,
this program is simple to understand. Each click of the
mouse creates a new blade of grass a bit to the right of the
last as long as bladePos is not off the right side of the screen.

While this program does the job, it is clearly a painful
way to create a field of grass. This provides motivation for
introducing loops to perform the repetitive activity.

More importantly, because the body of the onMouseClick
method is designed to be executed repeatedly, we have al-
ready figured out the building blocks of the while loop. We
have determined the need for the variable bladePos, and
how it is to be updated. Moreover, the if statement has al-
ready specified the conditions under which the body of the
loop should continue to be executed. (In practice we would
probably first introduce a version of the program without
the if and only later add it. This allows us to separate
concerns even more effectively.)

It is now very simple to rewrite this program with a while
loop. All that is necessary is to change the if to a while:

public class Grass2 extends WindowController {

// constants omitted

// x-coord of next blade of grass
private double bladePos;

// draw solid ground and sun
public void begin() {
new FilledRect(0,GROUND_LINE, SCREENWIDTH,
SCREENHEIGHT-GROUND_LINE, canvas);
new FilledOval (SUN_INSET,SUN_INSET,
SUN_SIZE,SUN_SIZE, canvas);

bladePos = 0;

// grow blades of grass when user clicks
public void onMouseClick(Location point) {
while (bladePos < SCREENWIDTH) {
new Line(bladePos,GRASS_TOP,
bladePos,GROUND_LINE, canvas);
bladePos = bladePos + GRASS_SPACING;
}
}
}

If, as is likely, it is desired to draw the grass on start-up,
then the while loop can be moved to the end of the begin
method.

Thus we can introduce the idea of loops concretely through
repeated executions of methods driven by separate events,
and then move in a very straightforward fashion to the syn-
tax of while loops. Notice as well that in the first version
of the program, execution pauses after each invocation of
the onMouseClick method. This is very similar to running
a while loop with a debugger and a breakpoint at the end of
each loop. It allows the programmer to examine the effect
of each execution of the body rather than looking only at
the result after the loop is completed.

In summary, the use of event-driven programming allows
the introduction of the different components of a loop slowly
via a series of examples. One can start just with executions
of the body of the loop by putting it inside of an event-
handling method. This can be tested with repeated events
to ensure correctness of successive invocations of the loop
body. Then one can add a conditional statement to skip
execution when the task is completed. Finally, converting
the conditional to a while loop (and possibly moving it to
a different part of the program) completes the construction
of a loop whose parts have already been tested.

4. TRANSITIONING TO STANDARD JAVA

We had several goals in the creation of the objectdraw
library. For example, we wished to provide true object-
oriented graphics that could be used as examples of objects
early in the course, yet were of value throughout the course.
More relevant to the focus of this paper, we wished to re-
duce the syntactic overhead of event-driven programming
involving mouse actions on a canvas.

One possible disadvantage of using a library is that at
some point students need to be taught the “standard” way of
accomplishing the same results. Because we wished to make
the transition to standard Java event-driven programming
for our students as simple as possible, we made sure that the
event-driven programming style supported by the library is

consistent with Java’s listener-based style.

While we relieved the programmer from declaring that
their class extending JApplet implemented the appropriate
listener interface and actually adding the listener to the can-
vas, in other respects our library encouraged students to
write code that emulates the listener approach of standard
Java. Mouse events trigger execution of a standard method
(e.g., onMouseClick(...)) in their applet class. The meth-
ods are only slightly simplified from standard Java in that
the formal parameter is associated with the place that the
user clicks on the canvas, rather than an event that must be
queried for the x and y coordinates of the click.

Once students learn this style of programming, it is easy
for them to transition to using standard Java for event han-
dling. Half-way through our course, we introduce students
to Java SWING GUI components. Because they already un-
derstand the event-driven style of programming, they need
only learn the syntax necessary to associate listeners with
the components (and learn a bit about layout). They al-
ready understand how the methods of listeners are called by
the run-time system when an event is generated. They sim-
ply have to follow the rules to create the components and
associate listeners with them.

Others designing libraries for introductory courses have
taken somewhat different approaches. For example, the
NGP library developed at Brown [5, 1] also supports both
graphics and event-driven programming. However, it sup-
ports event-driven programming using the old Java 1.0 model
that was discarded with Java 1.1. In this older model one
associates actions with components (e.g., buttons) by sub-
classing the component and overriding its action method. If
one learns event handling in this way, students will have to
learn an entirely new way of handling event-driven program-
ming when transitioning to standard Java.

On the other hand, the BreezySwing library of Lambert
and Osborne [8] goes farther than we have by providing pre-
defined event-handling methods for virtually all GUI compo-
nents, including buttons, menus, text fields, etc. By restrict-
ing our support for event-handling methods, we provide an
opportunity for students to learn how to do standard Java
event-handling once they have developed enough comfort
with the language that the syntactic overhead does not get
in the way.

5. CONCLUSIONS

In earlier papers [3, 2] we have argued that a well designed
library can make possible the introduction of event-driven
programming in CS 1. We also discussed there the advan-
tages of event-driven programming and an object-oriented
graphics library in enabling an objects-first approach to CS
1.

In this paper, we argue that the early introduction of
event-driven programming makes many of the standard top-
ics of CS 1 much easier for students to learn. We illustrated
this argument with examples involving the introduction of
classes, parameters, and loops.

For the last five years we have been teaching a course
using these ideas and the library we developed for this pur-
pose. We have written a text [4] based on these ideas, which
will be published this winter by Prentice-Hall. Our mate-
rials have been successfully tested for the last several years
by faculty and students at colleges, universities, and high
schools throughout the United States. They have discovered

that the use of event-driven programming, when supported
by a library like our objectdraw library, has strong pedagog-
ical and motivating factors that improve students’ learning
experiences.

6. REFERENCES

[1] C. Alphonce and P. Ventura. Using graphics to
support the teaching of fundamental object-oriented
principles in CS 1. In OOPSLA Educators’
Symposium, 2003.

[2] K. B. Bruce, A. Danyluk, and T. Murtagh.
Event-driven programming can be simple enough for
CS 1. In Proceedings of the 2001 ACM ITiCSE
Conference, pages 1-4, 2001.

[3] K. B. Bruce, A. Danyluk, and T. Murtagh. A library
to support a graphics-based object-first approach to
CS 1. In Proceedings of the thirty-second SIGCSE
technical symposium on Computer science education,
pages 6-10, 2001.

[4] K. B. Bruce, A. P. Danyluk, and T. P. Murtagh. Java:
An eventful approach. Prentice Hall, 2004.

[5] D. B. Conner, D. Niguidula, and A. van Dam.
Object-oriented programming: Getting it right at the
start. In OOPSLA Educators’ Symposium, Portland,
OR, 1994.

[6] F. Culwin. Object imperatives! In Proceedings of the
thirtieth SIGCSE technical symposium on Computer
science education, pages 31-36, 1999.

[7] R. Jimenez-Peris, S. Khuri, and M. Patino-Martinez.
Adding breadth to CS 1 and CS 2 courses through
visual and interactive programming projects. In Proc.
of the 30th SIGCSE Tech. Symp. on Computer
Science Education, pages 252-256, 1999.

[8] K. A. Lambert and M. Osborne. Java: A Framework
for Programming and Problem Solving. Brooks Cole,
2nd edition, 2001.

[9] D. Mutchler and C. Laxer. Using multimedia and GUI
programming in CS 1. In Proc. of the
SIGCSE/SIGCUE Conf. on Integrating Technology in
Computer Science Education, pages 63—65, 1996.

[10] S. Reges. Conservatively radical java. In Proceedings
of the thirty-first SIGCSE technical symposium on
Computer science education, pages 85—89, 2000.

[11] L. A. Stein. What we’ve swept under the rug:
Radically rethinking CS 1. Computer Science
Education, 8(2):118-129, 1998.

[12] U. Wolz and E. Koffman. simplelO: A Java package
for novice interactive and graphics programming. In
Proceedings ITiCSE, pages 139-142, 1999.

[13] P. Woodworth and W. Dann. Integrating console and
event-driven models in CS 1. In Proc. of the thirtieth
SIGCSE Technical Symposium on Computer Science
Education, pages 132-135, 1999.

